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Abstract. Currently, in connection with the rapid development of high-rise 
construction and the improvement of joint operation of high-rise structures 
and bases models, the questions connected with the use of various 
calculation methods become topical. The rigor of analytical methods is 
capable of more detailed and accurate characterization of the structures 
behavior, which will affect the reliability of objects and can lead to a 
reduction in their cost. In the article, a model with two parameters is used as 
a computational model of the base that can effectively take into account the 
distributive properties of the base by varying the coefficient reflecting the 
shift parameter. The paper constructs the effective analytical solution of the 
problem of a beam of infinite length interacting with a two-parameter voided 
base. Using the Fourier integral equations, the original differential equation 
is reduced to the Fredholm integral equation of the second kind with a 
degenerate kernel, and all the integrals are solved analytically and explicitly, 
which leads to an increase in the accuracy of the computations in comparison 
with the approximate methods. The paper consider the solution of the 
problem of a beam loaded with a concentrated force applied at the point of 
origin with a fixed value of the length of the dip section. The paper gives the 
analysis of the obtained results values for various parameters of coefficient 
taking into account cohesion of the ground. 

1 Introduction 
Modern design and construction of high-rise buildings and structures are unthinkable without 
a clear understanding of the features of the work as well as a number of constructive elements 
of the future facility. At the same time, the issues related to the refinement and improvement 
of the parameters of the design schemes reflecting the interaction of structures with the base 
become urgent. The design schemes of unique objects, among which, first of all, are modern 
skyscrapers, meet the most stringent requirements in terms of their strength, reliability and 
durability. The uniqueness of high-rise buildings requires the improvement of calculation 
methods, taking into account the numerous factors of operational, technological and 
constructive nature. A significant part of the calculations related to the constructions of such 
objects is connected with the specification of efforts in the elements interacting with the base, 
and any refinement of calculations significantly affects the cost. This formulation of the 
problem fully relates to the tape foundations of high-rise buildings and structures, industrial 
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and civil facilities, airfield and road surfaces, the operating conditions of which are associated 
with possible subsidence of the base and the formation of voids. When designing strip 
foundations located on karst rocks and subsidence soils in the form of loess deposits, which, 
when soaked, give a large draft, it is necessary to take into account the possibility of 
formation of depressions, dips, etc. under the foundations. The absence of contact of the beam 
with the base can occur at various sites, in particular, at the center or near the edge, which 
can be reduced to different statements of problems, for example, if the load and dip in the 
ground are in the central part of the strip foundation, then it can be calculated according to 
the scheme of infinite beams. 

Despite the diversity of the computational models of bases and methods for calculating 
them, these methods are usually not interrelated and are used to solve particular problems. 
Among the elastic base models using two parameters, one can note the results presented in 
the works of M.M. Filonenko-Borodich [1], V.Z. Vlasova and N.N. Leontiev [2] and P.L. 
Pasternak [3]. The main advantage of such models was the ability to take into account the 
distributive capacity of the base. In the two-parameter model of the elastic base, the first 
coefficient characterizes the rigidity of the base by compression, and the second, by the shear. 
Despite the various ideas proposed for the calculation of beams on an elastic base, the authors 
come to the same kind of differential equation 

4 2 4
2 4

4 2
1

2d w d w qar s w
E Jdx dx

       (1) 

where 2r  and 2s are the generalized elastic dimensionless quantities, a  is a half-length of 
the beam. 

Despite the availability of various techniques for determining the values of coefficients 
[4, 5, 6] in the reports on engineering and geological surveys, as a rule, information on the 
above coefficients is absent. In SCAD Office in the Pasternak satellite program, the method 
proposed by M.I. Gorbunov-Posadov [7] is used as one of the possible. 

In this formulation of the problem, the model proposed by V.Z. Vlasov, N.N. Leontiev 
[2] is used as a base, and the calculated values of the shear coefficient according to [8] are:

0k  , 0.5k   и 0.9k  . 
The method of solving a differential equation of this kind was considered both on the 

basis of rigorous analytical methods, for example, [9, 10], and with the widely used, 
approximate numerical methods [11, 12]. 

2 Materials and Methods 
To find the solution of the original differential equation, the method of generalized 

solutions proposed by V.I. Travush [10] is used. Later, this method was used to obtain an 
analytical solution to the bending of an infinite beam on a Winkler elastic foundation in the 
absence of a base under the beam part [13]. However, the main drawback of such a model of 
the basis is the lack of possibility to take into account its distributive capacity. The general 
form of the analytical solution for equation (1) was presented in [14], however, in our 
opinion, the authors made a number of inaccuracies, which in the case of implementing the 
above algorithm should lead to incorrect results. 

Consider an infinite beam lying on an elastic base with two bed coefficients [2], and there 
is no base under the central part of the beam (Fig. 1.). 
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Fig.1. The scheme of an infinite beam lying on the base with two parameters in the absence of a 

base on a given section. 
The arbitrary load ( )q x , applied to the beam can be decomposed into symmetrical and 

inverse symmetric components, relative to the vertical axis of the beam. The differential 
equation describing the deflection of a beam for a given condition in the treatment of [2] 
takes the form 

1 1( ) 2 ( ) ( ) ( ) ( ) ( )IVEJ y t a y k a y q               (2) 
 
In the treatment [8], (10), the authors do not reflect the allowance for the absence of 

tangential stresses under that part of the beam where there is no base (see (13) [8]); 
The equation (2) can be reduced to dimensionless coordinates by introducing the 

commonly used change of variables: 
x ;    yxy  ;     1aax  ; 

1 2
2 4t tk

kEJEJ
  ; 

44
EJ
k ; 1 4

4
k
EJ

    
 

; 0
1( ) ( )q x q x

EJ
 .    (3) 

Here E is the modulus of elasticity of the beam material; J  is its moment of inertia; t  
and k are the parameters of the base model; 1k  is the second coefficient of the bed; )( ax 
is the Heaviside function  







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ax
ax

ax
.1
,0

)(  

The differential equation for the deflection of a beam in dimensionless coordinates and 
functions, taking (2) into account, takes the form of 

1
1( ) ( ) ( ) 4 ( ) ( ) 4 ( )IVy x k x a y x x a y x k q x         (4) 

To solve equation (4), we can use the Fourier transform to solve problems with an infinite 
domain, when the function ( )y x  and its first three derivatives have no discontinuities in this 
area [15]. 

Under the action of the symmetric load component, applying the direct cosine of the 
Fourier transform separately for each term of equation (2), we obtain: 

1
0 0 0

0 0 0

2 2( )cos ( ( )cos ( )cos )

2 2 44( ( )cos ( )cos ) ( )cos

a
IV

a

y x xdx k y x xdx y t tdt

y x xdx y t tdt q x xdx
k
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 

  
 

 

 

   

  

  

  
  (5) 

Introducing the corresponding notation of Fourier transform: 
4 4

0 0

2 2( ) cos ( ) cos ( )IVy x xdx y x xdx Y    
 

 

     (5a) 
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The general form of the equation with respect to a new dimensionless coordinate is 
2

10
4 2 4 2

1 1 0
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( 4) ( 4)
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 
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 
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In contrast to [8], here we take into account the change in the form of the cargo term on 
the right-hand side, due to the consideration of the distributive properties of the base. 

Applying the inverse cosine of the Fourier transform to the resulting equation (6), we 
obtain an expression for the desired deflection function. 

2
10

4 2 4 2
1 10 0 0

( 4)cos cos( )2 4 2( ) cos ( )
( 4) ( 4)

ak t xQy x xd d y t dt
k k k
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    

  
 

       (7) 

Thus, applying the forward and inverse cosine of the Fourier transform to equation (2) 
allows us to reduce the differential equation (2) to the integral equation with respect to the 
sought deflection function of the beam ( )y x . 

0

( ) ( ) ( , ) ( )
a

c cy x y t K x t dt y x       (8) 

In this equation, the right-hand side ( )cy x   is the deflection of an infinite beam loaded 
with a given load and completely in contact with the two-parameter base along its entire 
length.  

The general expression for the deflection function of an infinite beam for symmetric 
components ( )cy x  ,using [16] is written in the following form 

1
0

1
0

1
1 14

02
1

1
1 1 1 14

0 02
1

1 1
0

2 4 1 2 1( ) { ( 1 cos(( ) 1 )
2 2 2 2 4 416

2 11 sin( 1 )) ( 1 cos(( ) 1 )
4 4 2 2 4 416

1 sin(( ) 1 ))}
4 4

kx xc

kx x

k kPy x e x x
k k

k k k kx x e x x
k

k kx x






  



  
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  (9) 

For the special case, when the load in the form of a concentrated force is applied in the 
center, i.e. 0 0x   the above expression takes the form of 

11
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2
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Introduce the notations: 
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The use of the theory of residues makes it possible to express the kernel of the integral 

equation (8) ( , )cK x t  through a combination of trigonometric and hyperbolic functions:  
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where 
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It follows from (12) that the kernel of the integral equation (8) – ( )cy x   is degenerate and 

that, when solving it, we must consider two cases. The first of them assumes that the point at 
which the deflection is sought is in that part of the beam where there is a base beneath it. 
Obviously, in this case it follows from (8) and (12), an expression for determining the 
deflection function of a beam is 
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integral equations with a degenerate kernel [5]. To this end, both sides of equation (14) are 
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After determining the coefficients ic  , the deflection function is known, hence the 
expressions for the angles of rotation, bending moments and transverse forces on the section 
of the beam in question are also known. We give their real values for the case of a 
concentrated force applied at the center of the beam: 
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It is more difficult to determine the deflection function in the beam portion where there 
is no base, i. e. a x a   . In this case we obtain from (8) and (12)  

2

1 0

( ) ( ) [ ( ) ( ) ( ) ( ) ( ) ( ) ]
x a

c c c c
i i i i

i x

y x y x H x y t t dt x y t t dt       


       (18) 

The solution of this equation can be obtained, for example, by the method of successive 
approximations; the corresponding integrals are calculated in explicit form. 
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We give the form of the calculated values of the first four integrals representing the 
corresponding coefficients:  

2 2 2 2

11 1 1
0

2 2

1 ( cos(2 ) ( )sin(2 ))( ) ( ) [ ( 2 )
4 ( )

sin(2 )( 1 )cos(2 )
( )]

x Bx Bx Bx Bx

Bx Bx

H B e e A B Ax A Ae Be Axf H t t dt S x
A BB B A A B

BAe B e AxAx
AA BL

A BA

 


 

 




   
      

 

 
 





12 1 1
0

( ) ( ) [ ( ) [2 ]sin(2 ) ( ) (2 sin(2 ))
4 ( )

(( ) ( )cos(2 ) [2 ]]

x Hf H t t dt A B L B S A ch Bx Ax B A B S Ax Ax
A B A B

A A B S A BL SB Ax sh Bx

 
        



   



2

13 2 1
0

2 2 2 2

1 cos(2 ) ( cos(2 ) sin(2 ))( ) ( ) [ ( )
4 ( )

1 ( cos(2 ) ( ( 1 ))sin(2 ))( 2 )]
( )

x Bx

Bx Bx Bx Bx

H A Ax e A Ax B Axf H t t dt S
A B A BA A

B e e A B Ax Be A e AxL x
A BB B A A B

 




 

 


     

 

   
     

 

  

7

E3S Web of Conferences 33, 02074 (2018)	 https://doi.org/10.1051/e3sconf/20183302074
HRC 2017



14 1 1
0

( ) ( ) [ ( ) (2 sin(2 ))
4 ( )

( ) [2 ]sin(2 ) (( ) ( )cos(2 )) [2 ]]

x Hf H t t dt B A B L Ax Ax
A B A B

A B L A S B ch Bx Ax A A B L BL A BS Ax sh Bx

 
     



      



1 1 2
0

3/2 2 2 2

3/2 2 2 3/2 2 2

3/2 2 2

1( ) ( ) [ ( )( )
16 ( ) 16

(2 3 ) ( ( )( 2 ( 2 ))

( ( 1 ) (1 ) (2 ) )cos(2 )

( ( 2 )

x
c

p

B x B x B x

B x B x B x B x

B x B x

f y t t dt A A B L B S A
A B A B k

B ABL A BS B S e A A B S A Be Lx B L Ae S x

B A e L AB e L B e S A B e S A x

B B e L AB e L

 



      
 

         

       

   



2 3/2 2( 1 ) (1 ) )sin(2 ))]B x B xAB e S A e S A x    

(23) 

The expression determining the values of the bending moment at the section where the 
base under the beam is absent will take the following form 
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  (24) 

3 Results 
As an example of using the obtained dependences, we give the calculation of an infinite 
beam, under the central part of which there is no base for the given section 2 1a  . The beam 
is loaded in the center by concentrated force P . The diagrams of these deflections and 
bending moments are shown in Figure 2 and Figure 3, for different values of the coefficient 
of adhesion. In the same place, the corresponding diagrams for an infinite beam everywhere 
contacting the base are shown in dashed lines. Actual values of deformations and forces can 
be obtained using (17), (18), and (24). 

 

Fig.2. Diagrams of an infinite beam deflections with 0.5a  and 0k  , 0.5k  , 0.9k  . 
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of adhesion. In the same place, the corresponding diagrams for an infinite beam everywhere 
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Fig.2. Diagrams of an infinite beam deflections with 0.5a  and 0k  , 0.5k  , 0.9k  . 

 
Fig.3. The bending moment diagrams of an infinite beam with 0.5a  and 0k  , 0.5k  ,

0.9k  . 
When a skew-symmetric load acts on the beam, the application of the sine-transformation 

to differential equation (4) makes it possible to reduce it to an integral equation of the type 
(12), but the right side of it will be the deflection function of an infinite beam from a given 
skew-symmetric load ( )sy x  , and the kernel of the equation is the function 

2
1 1 2 21

4 2
1 1 2 210

{ ( ) ( ) ( ) ( ) } ( )( 4)sin sin
( , )

{ ( ) ( ) ( ) ( ) } ( )( 4)
s H x t x t x tk x t

K x t d
H x t x t x tk

     


    


   

   

        
  (25) 

Here the functions: 

1( ) cos( )x Bx e x A 
  , 2( ) sin( )x Bx e x A 

  , 

1( ) cos( ) ( ) sin( ) ( )t S t A sh t B L t A ch t B    ; 

2( ) sin( ) ( ) cos( ) ( )t S t A ch t B L t A sh t B    , 

1( ) ( )cos( )x sh x B x A   , 2( ) ( )sin( )x ch x B x A   , 

1( ) ( cos( ) sin( )) t Bt S t A L t A e 
   , 2( ) ( sin( ) cos( )) t Bt S t A L t A e 

   .  (26) 

Conclusions 
 The perfection of the behavior simulation of an infinite beam lying on a base determined by 
two parameters and having a dip under the loaded part is of great importance for the design 
of high-rise buildings and structures. Taking into account the dips in the ground significantly 
changes the values of the calculated deformations and forces in the beam. The study can be 
used to analyze the strength and practical design, for example, of strip foundations. The 
analysis of the results obtained using different values of the coefficients showed that the 
proposed calculation method and the model of the base under consideration are simple and 
convenient for practical calculations and can constitute an alternative to other engineering 
methods. The proposed method of calculation can be easily extended to cases where the dip 
occurs not under one, but under several sections of the beam simultaneously. 
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