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Abstract. The issue is the evaluation of reliability of construction 
considering the influence of the variation of the support settlement, which is 
changing during the lifetime of constructions due to the consolidation 
process of the ground. Recently, the specialists give special emphasis to the 
necessity to develop the methods for the estimation of reliability and 
durability of structures. The problem, the article considers, is the 
determination of the reliability of multistory buildings with non-uniform 
changing-in-time sediments caused by the consolidation process in soils. 
Failure of structures may occur before the draft reaches it`s stabilizing value, 
because of the violations of the conditions of normal use. 

1 Introduction 
The support settlement has a great effect on the distribution of stresses and deformations of 
the structure. The most dangerous effects on the behavior of the structure is produced by the 
difference of the settlement of separate parts of the structure’s foundations, that difference 
causes some extra stresses and deformations of the structure’s elements. It is known that the 
settlement (sagging) depends on the kind of the basement soil and the state of stress in the 
grounds the foundation consists of.  

Let us consider the example: statically indeterminate truss which is situated in 
the layer of the soil.  

 
Fig.1 The truss loaded uniformly    Fig.2 The main system 

By the removal of one support, (B), the system is made statically determinate. 
Take the force of the interaction between the beam of the truss and the support (B) as 
the main unknown variable. The displacement of the point (B) in the main system in the 
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direction of the unknown force x1(t), the force was caused only by the imposed load, is 
denoted with Δ1p, and the displacement of the same point (B) in the direction of the unit 
force x1(t)=1, denote with δ11.  

The values Δ1p and δ11 do not depend on time but on the elasticity of the system. 
They can be determined by the well-known methods of frame-analysis. 

The strain compatibility condition for the given statically indeterminate system can 
be written that way: 

𝛥𝛥1𝑝𝑝 + 𝛿𝛿11𝑥𝑥1(𝑡𝑡) + 𝑠𝑠1[𝑥𝑥1(𝑡𝑡), 𝑡𝑡] = 0 (1) 

𝑠𝑠1[𝑥𝑥1(𝑡𝑡), 𝑡𝑡] — the function (yet unknown), which characterize the law of the variation 
of the supports` (B) settlement due to the unknown force x1(t). 

The hydrodynamic stress in the soil skeleton, as we know, is determined by the 
integration of the  equation: 

𝜕𝜕𝑃𝑃𝑧𝑧
𝜕𝜕𝑡𝑡 = 𝑐𝑐2 𝜕𝜕2𝑃𝑃𝑧𝑧

𝜕𝜕𝑧𝑧2  (2) 

with the following boundary limits: 
𝑡𝑡 = 0 и  0 ≤ 𝑧𝑧 ≤ ℎ0,   𝑃𝑃𝑧𝑧 = 0:  𝑧𝑧 = 0

𝑡𝑡 = 0 и  𝑧𝑧 = ℎ0,   𝑃𝑃𝑧𝑧 = 𝑃𝑃(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡)
𝐹𝐹

 (3) 

Solving the equation (2) with the Fourier’s method, we have: 

𝑃𝑃𝑧𝑧(𝑡𝑡) = 𝑝𝑝(𝑡𝑡) − 4
𝜋𝜋 ∑ 1

𝑘𝑘 𝑒𝑒𝜆𝜆𝑘𝑘
2𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘𝑘𝑘𝑘𝑘

ℎ0
[𝑝𝑝(0) + ∫ 𝑝𝑝′(𝜉𝜉)𝑒𝑒𝜆𝜆𝑘𝑘

2𝜉𝜉𝑑𝑑𝑑𝑑
𝑡𝑡

0
]

∞

𝑘𝑘=1,3,5
 (4) 

here: 

𝜆𝜆𝑘𝑘
2 = 𝑘𝑘2𝜋𝜋2

ℎ2 с2 

с2 — the soil consolidation coefficient, the expression  for it: с2 = 𝑘𝑘0
2 1+𝜉𝜉1

𝛥𝛥𝛥𝛥  
here: 
 k0 — the coefficient of filtration, and k0=const 
ξ1 — the porosity mid-index of the soil;  
α — the compacting factor under the compression of the soil;   
Δ — the volume weight of  water 

𝐻𝐻(𝑡𝑡) = 1
𝛥𝛥 [𝑃𝑃(𝑡𝑡) − 𝑃𝑃𝑧𝑧(𝑡𝑡)] 

The expression for the settlement (sagging) of the soil layer is 

𝑠𝑠1(𝑡𝑡) = 8𝑘𝑘0
𝛥𝛥ℎ0

[𝑝𝑝(0) ∑ 1 − 𝑒𝑒−𝜆𝜆𝑘𝑘
2𝑡𝑡

𝜆𝜆𝑘𝑘
2

∞

𝑘𝑘=1,3,5
+ ∑ ∫ 𝑑𝑑𝑑𝑑

𝑡𝑡

0

∫ 𝑝𝑝′(𝜉𝜉)𝑒𝑒𝜆𝜆𝑘𝑘
2(𝜏𝜏−𝜉𝜉)𝑑𝑑𝑑𝑑

𝜏𝜏

0

∞

𝑘𝑘=1,3,5
] (5) 

After changing the order of integration in the last summand, we have: 

∑ ∫ 𝑑𝑑𝑑𝑑
𝑡𝑡

0

∫ 𝑝𝑝′(𝜉𝜉)𝑒𝑒−𝜆𝜆𝑘𝑘
2(𝜏𝜏−𝜉𝜉)𝑑𝑑𝑑𝑑

𝜏𝜏

0

∞

𝑘𝑘=1,3,5
= ∑ 1

𝜆𝜆𝑘𝑘
2 ∫ 𝑝𝑝′(𝜉𝜉) [1 − 𝑒𝑒−𝜆𝜆𝑘𝑘

2(𝑡𝑡−𝜉𝜉)] 𝑑𝑑𝑑𝑑
𝑡𝑡

0

∞

𝑘𝑘=1,3,5
 (6) 

After partial integration of the right part: 
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2(𝑡𝑡−𝜉𝜉)] 𝑑𝑑𝑑𝑑
𝑡𝑡
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∞

𝑘𝑘=1,3,5
 (6) 

After partial integration of the right part: 

 

 
 

∑ ∫𝑑𝑑𝑑𝑑
𝑡𝑡

0

∫𝑝𝑝′(𝜉𝜉)𝑒𝑒−𝜆𝜆𝑘𝑘2(𝜏𝜏−𝜉𝜉)𝑑𝑑𝑑𝑑
𝜏𝜏

0

∞

𝑘𝑘=1,3,5

= −𝑝𝑝(0) ∑ 1 − 𝑒𝑒−𝜆𝜆𝑘𝑘2𝑡𝑡
𝜆𝜆𝑘𝑘2

∞

𝑘𝑘=1,3,5
+ ∑ 𝑒𝑒−𝜆𝜆𝑘𝑘2(𝑡𝑡−𝜉𝜉)𝑝𝑝′(𝜉𝜉)𝑑𝑑𝑑𝑑

∞

𝑘𝑘=1,3,5
 

(7) 

Substitute (5) in (7), so we have: 

𝑠𝑠1(𝑡𝑡) =
8𝑘𝑘0
𝛥𝛥ℎ0

∫ 𝑝𝑝′(𝜉𝜉)
𝑡𝑡

0

∑ 𝑒𝑒−𝜆𝜆𝑘𝑘2(𝑡𝑡−𝜉𝜉)𝑑𝑑𝑑𝑑
∞

𝑘𝑘=1,3,5
 (8) 

Make a note that 

𝑃𝑃(𝑡𝑡) = 𝑥𝑥1(𝑡𝑡)
𝐹𝐹  

F — the square of the foot of the support (B). 
Finally, we get the following expression for s1(t): 

𝑠𝑠1(𝑡𝑡) =
8𝑘𝑘0
𝛥𝛥ℎ0𝐹𝐹

∫𝑥𝑥1(𝜉𝜉)
𝑡𝑡

0

∑ 𝑒𝑒−𝜆𝜆𝑘𝑘2(𝑡𝑡−𝜉𝜉)𝑑𝑑𝑑𝑑
∞

𝑘𝑘=1,3,5
 (9) 

The expression (9) gives us the expression for the variation of the support (B) settlement 
for our statically indeterminate system as a function of the time t and the value of 
reaction x1(t). 
Substitute s1(t) from (9) in the strain continuity equation (1) 

𝛥𝛥1𝑝𝑝 + 𝛿𝛿11𝑥𝑥1(𝑡𝑡) +
8𝑘𝑘0
𝛥𝛥ℎ0𝐹𝐹

∫𝑥𝑥1(𝜉𝜉)
𝑡𝑡

0

∑ 𝑒𝑒−𝜆𝜆𝑘𝑘2(𝑡𝑡−𝜉𝜉)𝑑𝑑𝑑𝑑
∞

𝑘𝑘=1,3,5
= 0 (10) 

divide the equation (10)  into  δ11, with  t=0, so we have: 

𝑥𝑥1(0) = −
𝛥𝛥1𝑝𝑝
𝛿𝛿11

= 𝑥𝑥10 

𝑥𝑥1(𝑡𝑡) = 𝑥𝑥10 −
8𝑘𝑘0

𝛥𝛥ℎ0𝐹𝐹𝛿𝛿11
∫𝑥𝑥1(𝜉𝜉)
𝑡𝑡

0

𝑒𝑒−𝜆𝜆𝑘𝑘2(𝑡𝑡−𝜉𝜉)𝑑𝑑𝑑𝑑 (11) 

Let us introduce some notations: 

8𝑘𝑘0
𝛥𝛥ℎ0𝐹𝐹𝛿𝛿11

= 𝛽𝛽, ∑ 𝑒𝑒−𝜆𝜆𝑘𝑘2(𝑡𝑡−𝜉𝜉)
∞

𝑘𝑘=1,3,5
= 𝑘𝑘(𝑡𝑡 − 𝜉𝜉) (12) 

then the expression (11) turns into: 

𝑥𝑥1(𝑡𝑡) = 𝑥𝑥10 − 𝛽𝛽∫𝑥𝑥1(𝜉𝜉)
𝑡𝑡

0

𝑘𝑘(𝑡𝑡 − 𝜉𝜉)𝑑𝑑𝑑𝑑 (13) 
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So, the analysis of statically indeterminate systems in case of combined action: the load 
(q) and the settlement of one of it’s supports, variative in time, is reduced to the solution 
of the integral Volterra equation, that is (13).  If 

k(t − ξ) = ∑ e−λ2π2( c
n0

)
2

(t−ξ)
∞

k=1,3,5
 (14) 

k(z) = ∑ e−λ2π2z
∞

k=1,3,5
 (15) 

z = ( c
n0

)
2

(t − ξ) (16) 

Use the integral equation (13), so 

𝑥𝑥1(𝑡𝑡) = 𝑥𝑥1
0 [ 1

1 + 𝑏𝑏 − 𝑏𝑏 ∑ 𝑒𝑒𝜆𝜆𝑘𝑘𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠 2𝜆𝜆𝑘𝑘
𝜆𝜆𝑘𝑘(𝑐𝑐𝑐𝑐𝑐𝑐2𝜆𝜆𝑘𝑘 + 𝑏𝑏 )

∞

𝑘𝑘=1
]   (17) (17) 

here: 

𝑥𝑥1(0) = 𝑥𝑥1
0, 𝑏𝑏 = 𝛽𝛽

2 (𝑛𝑛0
2 )

2
, 𝑥𝑥1(∞) = 𝑥𝑥1

0

1 + 𝑏𝑏 ,

∑ 𝑠𝑠𝑠𝑠𝑠𝑠 2𝜆𝜆𝑘𝑘
𝜆𝜆𝑘𝑘(𝑐𝑐𝑐𝑐𝑐𝑐2𝜆𝜆𝑘𝑘 + 𝑏𝑏 )

∞

𝑘𝑘=1
= − 1

1 + 𝑏𝑏 

Come back to our example — statically undetermined truss, shown in fig.1 (the main 
system is shown in fig.2). Set the physical and mechanical properties for the foundation 
and the construction  

F=49 m2 — base area; 
EJ=9·103 kg·cm2 — the stiffness of the section; 
q=60 kg/m — the load; 
k0 =2,2·107 cm per second  — the coefficient of filtration; 
ξ1 =1,368 — the porosity mid-index of the soil;  
с2 = 𝑘𝑘0

1+𝜉𝜉1
𝛥𝛥𝛥𝛥 = 0,253 ∙ 10−2 𝑐𝑐𝑐𝑐2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠⁄  — the compacting factor of the soil;   

h0=4 m  — the height of the soil layer; 
β=6,24·10-7 gramm per second; 
Δ=5,17. 

Table 1 contains the values of bending moments in the truss. 
Table 1. values of bending moments in the truss 

             M 
t 

       

t=1 day 61,02 96,36 96,36 40,5 -49,77 -49,77 -85,11 
t=7 days 86,88 89,28 89,28 -40,5 -47,52 -47,52 -49,92 
t=3 months 55,51 90,85 90,85 -40,5 -44,51 -44,51 -79,85 
t=1 year 54,78 90,54 90,54 -40,5 -44,1 -44,1 -79,86 
t=∞ 54,78 90,59 90,57 40,6 -44,3 -44,35 -79,88 
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Table 1. values of bending moments in the truss 

             M 
t 

       

t=1 day 61,02 96,36 96,36 40,5 -49,77 -49,77 -85,11 
t=7 days 86,88 89,28 89,28 -40,5 -47,52 -47,52 -49,92 
t=3 months 55,51 90,85 90,85 -40,5 -44,51 -44,51 -79,85 
t=1 year 54,78 90,54 90,54 -40,5 -44,1 -44,1 -79,86 
t=∞ 54,78 90,59 90,57 40,6 -44,3 -44,35 -79,88 

 

 
 

The most bending moment in the framework is 

Mmax = 162q [ 1
1 + b − be−st sin 2λ1

λ1(cos2λ1 + b)] + 18,33q − 6,11q − 162q (17) 

Let us introduce some notations: 

                                     𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = ( 162
1 + 𝛽𝛽 + 18,33 − 6,11 − 162) 𝑞𝑞

D = 162qb ∙ sin 2λ1 
λ1(cos2λ1 + b)

 (18) 

The situation is that the limits of the fail-safe behavior area is determined by 
the condition: 

𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑀𝑀0 − 𝐷𝐷𝑒𝑒𝑠𝑠,𝑡𝑡 ≤ 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎  (19) 

 (Macc — the acceptable value of the moment) 
The condition could be transformed to 

𝑧𝑧 = 𝑀𝑀0 − 𝑀𝑀доп
𝐷𝐷 = 𝑒𝑒𝑠𝑠,𝑡𝑡 (20) 

Take only the first member of the raw in (17) and prelogarithmic both parts of 
(17), so we get: 

𝑙𝑙𝑙𝑙 𝑧𝑧 = 𝜔𝜔 = 𝑠𝑠, 𝑡𝑡 (21) 

here 

𝑠𝑠1 = − 𝜆𝜆1
2

𝛼𝛼0
2 

The probability features of ω depends on the random properties of all the 
variables the function z depends on. The limits of the fail-safe behavior area depends on 
the random value z=z0 (ω=ω0), which has mathematical expectation  ω0̅̅̅̅   and the 
dispersion σ2(ω0). Suppose that the failure happens then Mmax=Macc, the probabilistic 
properties of  z0(ω0) are defined only by the probabilistic properties of  𝑀𝑀𝑚𝑚𝑚𝑚𝑚𝑚

0  , and the 
probabilistic properties of s are defined by the variation of the consolidation coefficient. 

The exact time of failure corresponds to the point where the stochastic process 
(21) and the probable limits of the no- failure behavior area cross. Suppose that then the 
failure happens s=ω0/T, the characters s and ω0 are independent and random and that they 
have a truncated  Gaussian distribution in the intervale (0, ∞). This is so, for example, 
then the random value of z has a logarithmically normal distribution of the random value 
T, such as 

𝐹𝐹(𝑡𝑡) = 𝛼𝛼𝜔𝜔0𝛼𝛼𝑠𝑠 ∫ [ ∫ 𝑓𝑓(𝑠𝑠)𝑑𝑑𝑑𝑑
∞

𝜔𝜔0 𝑡𝑡⁄

] 𝑓𝑓(𝜔𝜔0)𝑑𝑑𝜔𝜔0

∞

0

 (22) 

here αω0, αs  — normalizing multiplier factors of that distribution. 
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                                        αn = [0,5 + Ф (mn
σn

)]
−1

 (23) 

n = ω0, s 
The expression for the density of distribution for no-failure behavior is that: 

𝑓𝑓(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑   (24) 

Then, in accordance with (4), it can be written down: 

𝑑𝑑
𝑑𝑑𝑑𝑑 ∫ 𝑓𝑓(𝑠𝑠)𝑑𝑑𝑑𝑑

∞

𝜔𝜔0 𝑡𝑡⁄

= 𝜔𝜔0

𝜎𝜎(𝑠𝑠)𝑡𝑡2√2𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 [1

2 ( 𝜔𝜔0
𝜎𝜎(𝑠𝑠)𝑡𝑡 − 𝑚𝑚𝑚𝑚

𝜎𝜎(𝑠𝑠)
)

2
] (25) 

Substitute (22) into (24) and take into account (25), then we get the expression for the 
density distribution for the time of no-failure behavior of the construction:  

𝑓𝑓(𝑡𝑡) = 𝛼𝛼𝜔𝜔0𝛼𝛼𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒[0,5(𝛽𝛽2 𝜎𝜎⁄ + 𝛼𝛼2)]
2𝜋𝜋(𝑡𝑡2 + 𝜎𝜎2)

+ 𝛼𝛼𝜔𝜔0𝛼𝛼𝑠𝑠(𝛽𝛽𝑡𝑡 + 𝛼𝛼𝜎𝜎2)
√2𝜋𝜋(𝑡𝑡2 + 𝜎𝜎2)

𝑒𝑒𝑒𝑒𝑒𝑒 [−
(𝛽𝛽 − 𝛼𝛼𝛼𝛼)2

2(𝑡𝑡2 + 𝜎𝜎2)] [0,5

+ Ф 𝛽𝛽𝑡𝑡 + 𝛼𝛼𝜎𝜎2

𝜎𝜎√𝑡𝑡2 + 𝜎𝜎2
] 

(26) 

σ = σ ω0
σ(s) ;    β = ω0̅̅̅̅

σ(s) ;   α = s̅
σ(s) 

The reliability function of the system is determined by the following expression: 

𝑃𝑃(𝑡𝑡) = 1 − ∫ 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0

 (27) 

 
Fig.3 The distribution density of non-failure work 
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Conclusions 
The variation of the support settlement has a significant effect on the distribution of 
moments in the left vertical pier and in the beam of the truss. The resultant expression 
(26) for the density distribution of the time of no-failure behavior corresponds to the 
physical meaning of the task. The rate of  accumulation of settlement decreases over time. 
We can find from (27) that the rate of the decrease of the reliability function is the most 
of all at the start moment and decreases gradually. For example, let the coefficient of 
variation, the consolidation coefficient be 0,2 and β be 50, then we get, — for various 
values of σ in accordance with (26), — different curves describing the density distribution 
for the time of no-failure behavior.  

We should make a note that 𝑡𝑡 = 0, 𝑓𝑓(𝑡𝑡) ≠ 0. 
Fig.3 shows that the density distribution of the time of no-failure behavior increases 

from the constant value t=ti and, with increasing value of t, the density distribution 
decreases. 
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