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Abstract. An exact calculation of the heat exchange of evaporative surfaces 
is possible only if the physical processes of hydrodynamics of two-phase 
flows are considered in detail. Especially this task is relevant for the design 
of refrigeration supply systems for high-rise buildings, where powerful 
refrigeration equipment and branched networks of refrigerants are used. On 
the basis of experimental studies and developed mathematical model of 
asymmetric dispersed-annular flow of steam-water flow in horizontal steam-
generating pipes, a calculation formula has been obtained for determining 
the boundaries of the zone of improved heat transfer and the critical value 
of the heat flux density. A new theoretical approach to the solution of the 
problem of the flow structure of a two-phase flow is proposed. The applied 
method of dissipative characteristics of a two-phase flow in pipes and the 
principle of a minimum rate of entropy increase in stabilized flows made it 
possible to obtain formulas that directly reflect the influence of the viscous 
characteristics of the gas and liquid media on their distribution in the flow. 
The study showed a significant effect of gravitational forces on the nature of 
the phase distribution in the cross section of the evaporative tubes. At a mass 
velocity of a two-phase flow less than 700 kg / m2s, the volume content of 
the liquid phase near the upper outer generating lines of the tube is almost 
an order of magnitude lower than the lower one. The calculation of the heat 
transfer crisis in horizontal evaporative tubes is obtained. The calculated 
dependence is in good agreement with the experimental data of the author 
and a number of foreign researchers. The formula generalizes the 
experimental data for pipes with the diameter of 6-40 mm in the pressure of  
2-7 MPa. 

1 Introduction 
Design and calculation of heat exchange surfaces with their different orientations in space, 
including horizontal ones, is of wide use in steam generators of thermal installations in 
various branches of industrial heat power engineering. Today the development of reliable 
and economical devices with boiling heat-transfer agents is one of the most important tasks 
in heat and power engineering, the successful development of which largely depends on the 
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knowledge of the processes of hydrodynamics and heat transfer in two-phase working media, 
as well as issues related to the intensification of heat exchange and the prevention of crisis 
phenomena. In the present article, in order to simplify the analysis, the annular structure of a 
two-phase flow is the design model. The solution is based on the principle of a minimum of 
energy dissipation in a stabilized flow associated with irreversible losses by  internal friction 
during the movement of real media. From the thermodynamic point of view, in the flow of a 
viscous liquid degradation occurs (energy depreciation), as in all other real processes taking 
place in nature, the characteristic feature of which is the increase in the entropy of the system. 
Internal nonequilibrium processes always act in a direction that causes a decrease in the rate 
of entropy increase. In the thermodynamics of irreversible processes, this law is formulated 
as follows: as the system goes over to the stationary-nonequilibrium state, the value of the 
incremental increase in entropy decreases, and when the stationary-nonequilibrium state is 
reached, it is of the smallest value compatible with external constraints [1, 2]. 

2 Methods 
Let us consider the annular regime of a stabilized gas-liquid flow in a pipe with radius of 𝑅𝑅0, 
shown in the Fig. 1. This flow will consist of a ring layer of liquid with thickness δ and a 
cylindrical gas core with radius 0GR R   . The mass flow of fluid Gl and gas Gg and 

their physical parameters (density, viscosity) lglg  are assumed to be known [3,4]. 
In horizontal and low-inclined pipes, the lifting force (Archimedova) exerts an essential 

effect on the steam core: 
 2( ' '')gА rР R l      (1) 

where rR  - radius of vapor nucleus, m; '  и ''   - liquid and gas density, kg/m3; g - projection of 

the acceleration of gravity on the plane of the pipe cross-section, m/s2; l  - length of the pipe element, 
m. 

Under this force, the co-alignment of the vapor nucleus and the annular layer of the liquid 
is disrupted. The thickness of the liquid layer δ becomes not uniform along the perimeter 
(Fig. 1). At the top of the pipe, the liquid layer becomes thinner, in the lower one, the liquid 
layer thickens. The vertical displacement of the flow nucleus will be accompanied by an 
increase in the energy dissipation intensity associated with increasing friction losses. 

It is obvious that a certain amount of displacement of the steam nucleus h corresponding 
to a minimum of the second change in the energy of the system for given boundary conditions 
will correspond to the stabilized flow. 

 
Fig. 1. The model of horizontal asymmetric annular flow of steam-water flow 
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We start from the assumption that the total specific work in each section of the stabilized 
vapor-liquid flow has a minimum [2]: 
 

 ( ) minie h  ,
 (2) 

where i
Ee
V

 ;      

 Е - secondary work of internal friction forces, W;  V - the volume of the pipe ∆l. 
Energy flows, independent of h, are not introduced here. 

Let us consider the problem of finding the magnitude of the displacement of the vapor 
nucleus, as well as the minimum thickness of the liquid film 𝛿𝛿𝑐𝑐𝑐𝑐

в , and of corresponding 
boundary heat flow density 𝑞𝑞𝑐𝑐𝑐𝑐   (W/m2), at which a sharp deterioration of heat transfer in the 
region of the upper generator of the evaporation tube is observed [3]. 

We assume that when the vapor bucleus is displaced, its cross section is deformed 
insignificantly, and the absolute velocity 𝜔𝜔о𝐿𝐿 at the boundary of the vapor nucleus and the 
liquid layer is unchanged. In this case, the second energy loss by  friction in the liquid 
layer𝑉𝑉𝐿𝐿 = 𝐹𝐹′∆𝑙𝑙 can be expressed by the following integral. 
where 𝜏𝜏𝐿𝐿  - frictional stress in a liquid layer, N/m2; 𝜏𝜏𝐿𝐿 = 𝜇𝜇𝐿𝐿 ∙ 𝑑𝑑𝑑𝑑𝐿𝐿

𝑑𝑑𝑑𝑑 ; 'F - sectional area occupied by a 
liquid; 𝑤𝑤𝐿𝐿- local fluid velocity in the section under consideration, m/s. 

d =ΔF lRd .     (3) 

Assuming the law of velocity distribution 𝑤𝑤𝐿𝐿(𝑅𝑅)  in the liquid layer to be linear, we can 
rewrite the integral (3) in the following form 

𝐸𝐸𝜏𝜏 = 2∆𝑙𝑙 ∫ d𝛽𝛽𝜋𝜋
0 ∫ 𝜇𝜇𝐿𝐿

𝑅𝑅𝑟𝑟+𝛿𝛿
𝑅𝑅𝑟𝑟

𝑤𝑤𝑜𝑜𝑜𝑜
2

𝛿𝛿2 𝑅𝑅d𝑅𝑅,                                        (4) 
where  - thickness of the liquid layer. 
Integrating over the variable R, we have: 

𝐸𝐸𝜏𝜏 = ∆𝑙𝑙 ∫ μ𝐿𝐿𝑤𝑤𝑜𝑜𝑜𝑜
2

δ
𝜋𝜋

0 (2𝑅𝑅𝑟𝑟 + 𝛿𝛿)dβ.                                    (5) 

Given that ,r oR R   
we receive  

Еτ = ∆lμ𝐿𝐿𝑤𝑤о𝐿𝐿
2 (π + 2√φ ∙ R0 ∫ dβ

δ
π

0 ).                             (6) 
According to the Fig. 1 

𝛿𝛿 = √𝑅𝑅0
2 + ℎ2 − 2𝑅𝑅0ℎ cosβ − 𝑅𝑅𝑟𝑟,                                  (7) 

where h - displacement of the center of the vapor nucleus relative to the axis of the pipe. 
With a relatively small thickness of the liquid layer, the function 𝛿𝛿 = 𝑓𝑓(𝛽𝛽) can be 
represented as the following formal power series: 

1
𝛿𝛿 = в0 + в1𝛽𝛽 + в2𝛽𝛽2 + в3𝛽𝛽3 + ⋯.                           (8) 

Restricting ourselves to the first four terms of the written expansion of the function 1/ 𝛿𝛿 in 
powers of β, we find the coefficients of the polynomialв0, в1, в2  and в3 from the following 
boundary conditions: 

1) 𝛽𝛽 = 0   1/ 𝛿𝛿 = 1
𝛼𝛼−ℎ ; 

2) 𝛽𝛽 = 𝜋𝜋   1/ 𝛿𝛿 = 1
𝛼𝛼+ℎ ; 

3; 4){ 𝛽𝛽 = 0
𝛽𝛽 = 𝜋𝜋 

𝜕𝜕(1
𝛿𝛿)

𝜕𝜕𝜕𝜕 = 0  ; 
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where 𝛼𝛼 = 𝑅𝑅0 − 𝑅𝑅𝑟𝑟 = 𝑅𝑅0(1 − √φ). 
From the first boundary condition  

в0 = 1
𝛼𝛼−ℎ.                                                               (9) 

From the second boundary condition 

𝜋𝜋в1 + 𝜋𝜋2в2 + 𝜋𝜋3в3 = − 2ℎ
𝛼𝛼2−ℎ2.                                            (10) 

From the third boundary condition в1 = 0.                   (11) 

From the fourth  boundary condition 

в1 + 2𝜋𝜋𝑏𝑏2 + 3𝜋𝜋3в3 = 0.                                            (12) 

Solving jointly (10), (11), and (12), we obtain 

в2 = 6ℎ
𝜋𝜋2∙(𝛼𝛼2−ℎ2);                                                       (13) 

в3 = 4ℎ
𝜋𝜋3∙(𝛼𝛼2−ℎ2).                                                 (14) 

Thus, the desired dependence can be represented in the following form: 
1
𝛿𝛿 = 1

𝛼𝛼−ℎ − 6ℎ𝛽𝛽2

𝜋𝜋2(𝛼𝛼2−ℎ2) + 4ℎ𝛽𝛽3

𝜋𝜋3(𝛼𝛼2−ℎ2).                                     (15) 

Evaluate the integral (6): 

∫ 𝑑𝑑𝑑𝑑
𝛿𝛿

𝜋𝜋
0 = ∫ [ 1

𝛼𝛼−ℎ − 6ℎ𝛽𝛽2

𝜋𝜋2(𝛼𝛼2−ℎ2) + 4ℎ𝛽𝛽3

𝜋𝜋3(𝛼𝛼2−ℎ2)] 𝑑𝑑𝑑𝑑 = 𝜋𝜋
𝛼𝛼−ℎ − 2𝜋𝜋ℎ

𝛼𝛼2−ℎ2
𝜋𝜋

0 + 𝜋𝜋ℎ
𝛼𝛼2−ℎ2 = 𝜋𝜋𝜋𝜋

𝛼𝛼2−ℎ2.            (16) 

Taking into account (16), the expression of the second frictional losses (6) takes the 
following form: 

Еτ = π∆lμ𝐿𝐿ω0𝐿𝐿
2 (1 + 2√φ∙R0α

α2−ℎ2 ).                               (17) 

Consider a second change in the energy of the selected element of the flow in the region Δl, 
which will be determined by the work spent against the gravitational forces on the 
displacement of the liquid M in the transverse direction relative to the channel: 

Еπ = М𝑔𝑔(𝑦𝑦𝑐𝑐
, − 𝑦𝑦𝑐𝑐

,,),                                                                     (18) 

where 𝑔𝑔 - projection of the acceleration of gravity on the plane of the pipe cross-section,  m/s2 (for 
horizontal pipe 𝑔𝑔 = 9,81 m/s2); 𝑦𝑦𝑐𝑐

,,- the ordinate of the center of gravity of the vapor nuclear.  
According to the earlier assumptions 𝑦𝑦𝑐𝑐

,, = ℎ.                 (19) 
The ordinate 𝑦𝑦𝑐𝑐

,  of  the center of gravity of the cross section of the liquid layer when the 
steam nucleus is displaced by an amount h, is determined from the equation of moments of 
static equilibrium with respect to the horizontal axis of the section of the pipe 0-0 (Fig. 1): 

𝜌𝜌,𝐹𝐹,𝑔𝑔𝑦𝑦𝑐𝑐
, = 𝑔𝑔(𝐹𝐹𝜌𝜌, ∙ 0 − ℎ𝐹𝐹,,𝜌𝜌,);                                        (20) 

As 𝐹𝐹, = 𝐹𝐹(1 − φ) and 𝐹𝐹,, = φ𝐹𝐹, then  
𝐹𝐹(1 − φ)𝜌𝜌,𝑔𝑔𝑦𝑦𝑐𝑐

, = −𝑔𝑔ℎφ𝐹𝐹ρ,.                                                     (21) 
Hence 𝑦𝑦𝑐𝑐

, = − φℎ
1−φ.                                 (22) 

Substituting (19) and (22) into (18), we obtain  
Еп = −М𝑔𝑔 ℎ

1−𝜑𝜑.                                                                     (23) 
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For the selected element with the length of l  the second-long transverse transport of the 
mass M will be composed of the following flows [4]: 
1) the mass of the liquid, changing into a vapor state in the amount of ΔD, kg/s  

∆D = 2πR0∆lq
r ,                                                     (24) 

where  q - heat flow density, W/m2; r - heat of vaporization, J / kg. 

2) the transverse displacement of the liquid during the evaporation process, which is 
proportional to ΔD: 

М1 = С1∆D;                                                     (25) 

3) liquid particles in the  result of their mechanical detachment from the inner surface 
of the liquid layer and entrainment into the vapor nucleus [5, 6, 7]. 

We assume that the flow density of dispersed particles from the surface of the liquid layer 
is proportional to the average mass flow rate of the liquid phase: 

М2 = С2(𝜌𝜌𝑤𝑤) ∙ (1 − х) ∙ ∆𝐹𝐹.                                          (26) 

In this case  the coefficient of proportionality С2 is a function of the Weber number  

С2 = С2
, ∙ 𝑊𝑊𝑒𝑒 = 𝐶𝐶2

, 𝜌𝜌,,(𝑤𝑤,,̅̅ ̅̅ −𝑤𝑤,̅̅ ̅)22𝑅𝑅0
𝜎𝜎, ,                                  (27) 

where 𝑤𝑤,,̅̅̅̅ и 𝑤𝑤,̅̅ ̅ - average cross-sectional velocities of the vapor and liquid phases in the flow; 𝜎𝜎 - 
surface tension coefficient, N/m. As 

𝑤𝑤,,𝐹𝐹,,𝜌𝜌,, = (𝜌𝜌𝜌𝜌)х𝐹𝐹0;                                                           (28) 

𝑤𝑤,𝐹𝐹,𝜌𝜌, = (𝜌𝜌𝜌𝜌)(1 − х)𝐹𝐹0,                                               (29) 

where 𝐹𝐹, и 𝐹𝐹,,- the cross-sectional area of the pipe, occupied by liquid and steam, м2; 𝜌𝜌𝑤𝑤 - mass flow 
rate, kg/m2 ∙ s, then 

𝑤𝑤,, = (𝜌𝜌𝜌𝜌)∙х
𝜑𝜑𝜌𝜌,, ;                                                                       (30) 

𝑤𝑤, = (𝜌𝜌𝜌𝜌)∙(1−х)
(1−𝜑𝜑)𝜌𝜌, .                                                                    (31) 

Thus, we obtain an expression for the Weber number  

𝑊𝑊𝑒𝑒 = 2𝑅𝑅0𝜌𝜌,,(𝜌𝜌𝜌𝜌)2

𝜎𝜎, ∙ [ х
𝜑𝜑𝜌𝜌,, − (1−х)

(1−𝜑𝜑)𝜌𝜌,]
2
.                                                (32) 

Taking into account (24), (25) and (26) the total mass flow be: 

𝑀𝑀 = ∆𝐷𝐷 + 𝐶𝐶1 ∙ ∆𝐷𝐷 + (𝜌𝜌𝜌𝜌)(1 − 𝑥𝑥) ∙ 2𝜋𝜋𝑅𝑅0∆𝑙𝑙 [𝐶𝐶𝐶𝐶
𝑟𝑟 + 𝐶𝐶2(𝜌𝜌𝜌𝜌)(1 − 𝑥𝑥)].                      (33) 

where ∆𝐷𝐷 - mass of a liquid passing into a vapor state;  

С=С1+1. 

The specific work against gravitational forces is as follows: 

 

    3
0

2 1 ,
1

п
п

Е Cgh qе C w x
V R r




         
 

 (34) 
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3 C c

c
 . 

Specific work of internal friction forces:  

 , ,2
00

2 2 2
0

21 RЕ wе
V R a h



   

      .

 
(35) 

We find the value of h from the condition for the transition of the system to a stationary state. 
Moreover, the latter will be achieved when ( ) mine h   [8] 
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Substituting expression (34) and (35) into equation (36), after differentiation, we obtain: 
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3 Results 
Based on the analysis of experimental studies of the structure of the horizontal steam-water 
flow by the method of "electrosounding" and generalization of the author's experimental data 
in the range P = 2-7MPa; ρw = 100 ÷ 1500 kg

m2 ∙ 𝑠𝑠;  x> 0.2; 0.012m≤𝑑𝑑0≤0.019 m, it was 
obtained an expression for the reduced thickness of the liquid film at the upper pipe generator 
at the boundary of the zone of deteriorated heat transfer. 
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(41) 

The validity of expression (41) is confirmed by experimental measurements of the 
effective thickness of the liquid film at the upper pipe generator at the boundary of the onset 
of thermal pulsations. Moreover, it is established that for smooth pipes К𝛼𝛼= 1,1. 

From the expression (40) we obtain following expression for the boundary density of the 
heat flow: 

𝑞𝑞𝑐𝑐𝑐𝑐
𝑟𝑟 = С1 [

Т
В − С𝑊𝑊𝑒𝑒(𝜌𝜌𝜌𝜌)(1 − 𝑥𝑥)],                                                              (42) 
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Substituting the values of the numerical coefficients found from the experiments, we 
finally obtain the critical density of the heat flow: 
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In the Fig. 2 the dependences of the boundary heat load on the mass gas content according 
to the formula (45) are given. In the same place, the experimental data obtained by the author 
and also by other researchers are plotted [9, 10, 11]. 
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Fig. 2. Comparison of experimental data with calculation of  qcr for a horizontal evaporator 

pipe (d0 = 0.017 m, P = 5 MPa) 

4 Conclusion 
The formula generalizes the experimental data obtained on steam-vaporizing pipes with an 
internal diameter 0,012 0,019od    in the pressure range 3-7 MPa, the range of mass 
flow velocities 300-1400 kg/m2 ·s for relative enthalpies of the flow x > 0.2 with an accuracy 
± 20% [12]. 
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In the range of relative enthalpies 0.2 <x <0.3, in the experimental values 𝑞𝑞𝑐𝑐𝑐𝑐  an 
appreciable spread takes place, and in the range x = 0.2, the effect of the heat flow on the 
boundary of the zone of deteriorated heat transfer practically degenerates. The character of 
the dependence 𝑞𝑞𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝑥𝑥)  is analogous to a crisis of the second kind in vertical pipes (the 
experimental values obtained under these conditions in the q, x coordinates are grouped 
around almost vertical lines) [14, 15]. And in the normative method, it is proposed to take 
the degraded heat transfer zone outside the range of medium pressures for horizontal 
evaporative tubes at x = 0.3 for P <5.0 MPa for any q. 

In this case, the dispersed-annular flow regime is only formed and has an appreciable 
hydrodynamic instability. At low mass velocities 700w   kg/m2 ·s, the vapor clusters 
moving along the upper generator periodically cause "dry spots" on the channel wall, which 
in turn leads to the thermal pulsations of the wall near the upper generator of the pipe. 

With decreasing q to a certain value minq , the dependence 𝑞𝑞𝑐𝑐𝑐𝑐 = 𝑓𝑓(𝑥𝑥)  sharply deflects 
to the right and the boundary density of the heat flow 𝑞𝑞𝑐𝑐𝑐𝑐   even slightly increases. It is 
explained by the fact that the steam-water flow rate increases as the steam flow rate increases, 
which in turn reduces the asymmetry of the flow and increases the velocity of liquid droplets 
in the flow nucleas (i.e., the irrigation conditions of the channel wall improve) [13]. 

In the range of relative enthalpies 0.2 <x <0.3, the boundary heat flow density 𝑞𝑞𝑐𝑐𝑐𝑐  
calculated by formula (45) corresponds to the minimum experimental values of q when the 
wall thermal impulses on the upper generator of the horizontal steam generating pipe were 
observed. A further increase in x greater than 0.4 is associated with a decrease in the thickness 
of the wall-mounted liquid film along the entire perimeter of the channel.  At the same time, 
the liquid droplets in the nucleus of the stream decrease, which significantly reduces the 
irrigation intensity of the channel wall. It leads to a monotonic decrease crq . 

In some regimes it was possible to observe simultaneously two separate zones of thermal 
pulsations along the length of the channel (Fig. 3): one in case of small values of x of 0.2 
order and the other near the outlet section of the pipe. A similar phenomenon was also noted 
in [14, 15]. Two separate zones of thermal pulsations on the upper generator of a horizontal 
pipe can be explained on the basis of the combined influence of many factors on the nature 
of the dependence ( )crq f x , which is in complete agreement with the above physical 
model of the horizontal steam-water flow.  

The dependence 𝑞𝑞𝑐𝑐𝑐𝑐  on the mass-velocity value for horizontal evaporative tubes is 
shown in the Fig. 2. It should be noted that obtained dependence has an inversion. An increase 
of w  up to 1000-1500 kg/m2 ·s leads to an increase in 𝑞𝑞𝑐𝑐𝑐𝑐 .. In the range of  1000-1500 
kg/m2 ·s an increase in the mass velocity value of𝑞𝑞𝑐𝑐𝑐𝑐  decreases. Moreover, at large vapor 
contents of the flow, the inversion point corresponds to smaller mass velocities. The observed 
phenomenon confirms the previously stated position that at high velocities the hydrodynamic 
processes in horizontal and vertical pipes are similar. 
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Fig. 3. Zones of deteriorated heat transfer in a horizontal evaporative tube  
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