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Abstract. Numerous papers dealing with the calculations of cylindrical 
bodies [1 -8 and others] have shown that analytic and numerical-analytical 
solutions in both homogeneous and inhomogeneous thick-walled shells can 
be obtained quite simply, using expansions in Fourier series on 
trigonometric functions, if the ends are hinged movable (sliding support). It 
is much more difficult to solve the problem of calculating shells with built-
in ends. 

1 Introduction 
As was shown in [8], the natural restriction of the method of separation of variables in the 
calculation of radially inhomogeneous cylinders is the impossibility of satisfying arbitrary 
boundary conditions at the ends. This paper considers an approximate method for solving the 
axisymmetric problem for a thick-walled cylinder with rigid fixed ends. The problem is 
solved in displacements. 

2 State of the problem 

In solving the axisymmetric problem will be sought displacements in the form: 

    From (1), the boundary conditions automatically follow  
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which correspond to the hinged (sliding) support (Н – cylinder height).  
Below we consider an approximate calculation method cylinder with rigid fixing ends. In 

this case, the boundary conditions at the ends are written in the form:  

Fig. 1 shows half the cross-section of a cylindrical shell for two ways of fixing the ends. 

 
Fig 1. Thick-walled cylinder, a – hinged movable support, b – built-in (rigid fixing) end. 

3 Approximate method for calculating 
The proposed method is based on the algorithm for calculating cylinders for the action of 
surface loads, which use an expanded area, compensating loads and the collocation method. 
We consider the problem when the external loads are symmetric with respect to the plane  
z1=H/2 (Fig. 2). Let us increase the height of the cylinder in both directions by an amount   
and introduce the coordinate z=z1+  We apply to the lateral surfaces of the cylinder in the 
interval [0,] and [H+, H+2] such compensating loads pa

c, pb
c, qa

c,qb
c, that at the given 

points r=r1  and r=r2 at z= and z= +H (Fig. 3) the following conditions are satisfied: 

.        (4) 

  

Fig.  2. Calculation scheme for a cylinder with 
an expanded area. 

Fig. 3.  Compensating loads in  expanded area. 

If equalities (4) are considered as conditions of real fixation, then it should be added that 
at the other points of the layers z    and z H   the displacements can be either 
positive or negative. In this case, it is necessary to accept the hypothesis of an ideal contact 
between the ends of the cylinder and the support surfaces, as is done in most contact 
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problems, for example, in the calculation of beams on an elastic foundation. Let us consider 
the nature of the compensating loads. If we imagine that these loads are the reaction of a 
semi-infinite array to the walls of a cylinder embedded in it, then as the distance from the 
layer z    to the layer 0z  , the tangential and normal loads should tend to zero. For a 
description of such loads can be approximately selected functions of the form: 

Such functions well approximate normal loads and worse – tangents, which near the layer 
z    have a peak character and when z    they are equal to zero. Nevertheless, if we 
bear in mind that when the compensating loads are decomposed into Fourier series, the peak 
nature of the loads c

aq  and c
bq  will also correspond quite accurately to their representations 

in the form of a series (Fig. 4).  

 

Fig. 4.  Representation of function f  by the Fourier series : - - - -  formula (5),          Fourier series 
(1 - ; 2 - ). 

The essence of this method is as follows. Representing compensating loads pa
c, pb

c, 
qa

c,qb
c,  in the form (5) and varying the parameters and , it is necessary to achieve the 

conditions (4) at the points A and B (see Fig. 3). It should be added that when using the 
collocation method, large deficiency of conditions (4) are possible at the remaining points of 
the interval on the layer . Therefore, the choice of the above parameters of the 
functions (5) must also be accompanied by an analysis of the indicated deficiency and its 
minimization. In this case, it is still possible to select the radii  and , determining the 
position of the points A and B. 

The following sequence of solution of the problem is proposed. At the first stage, using 
the numerical-analytical method presented in (7, 8), the problem of the effect of external 

force ( , ,a b ap p q , bq ) and temperature loads on a cylinder of length 2H    is solved. At 

the same time presence of hinged (sliding) supports at the ends 0z   and  2z H   , give 
the possibility of using the method. As a result of the solution, displacements ,P Pu w at 
points A and B are determined.  

The index p denotes the displacements from external (active) loads. The condition of 
symmetry with respect to the plane allows us to restrict ourselves to the 
consideration of displacements on the layer .  
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Further problems are solved successively to the action of compensating loads 

 and , as defined in (5). The highest values of these loads are assumed to be 
equal to unity (unit loads). Defining the displacements from unit loads at points A and B, one 
can construct a system of algebraic equations corresponding to conditions (4): 

, (6) 

where cU  is the displacements matrix of unit compensating loads of 4 x 4:     
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where the subscripts 1   4 denote respectively the displacements from the loads  

and ; K={K1,K2,K3,K4} is the vector of unknown coefficients; =

 is the displacements vector from the active loads, including the 

displacements  at points A and B. 
The coefficients , found as a result of solving the system of equations (6), 

determine the actual values of the compensating loads at the level . In other words, the 
compensating loads needed for the fulfillment of the conditions (4) in the section  
will have the form: 

 (7) 

Summarizing the solutions of five problems (one from external and four from 
compensating loads), we obtain the final solution of the problem that satisfies the boundary 
conditions. 

4 Analysis of the influence of various factors on the calculation 
results 

As noted above, the proposed method has three arbitrary factors: 
- length of the fixed edge  ; 
- degree of compensation load functions  ; 
- choice of collocation points A and B. 
Investigation of the influence of these factors on the stress-strain state of the cylinder and 

the determination of optimal calculation parameters was carried out in solving the problem 
for a homogeneous cylinder. We also considered the question of choosing the number of 
terms of the Fourier series N in the decomposition of loads and the number of steps M into 
which the integration interval is divided in the numerical solution of systems of ordinary 
differential equations. 
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On the example of the solution of the problem for a homogeneous cylinder with hinged 
(sliding) ends under the action of a constant external pressure , let us analyze the 
influence of the number M on the calculation results. Obviously, in this case there is a 
problem of a flat deformed state, for which there is an analytic solution [4]. In particular, the 
axial stresses in this problem are equal to: 

. (8) 

When choosing the number M, a comparison is made of the stress values. At М = 30, the 
difference between numerical and analytical calculations did not exceed 1%. An analysis of 
the influence of the number of terms of the Fourier series  N on the results of calculations 
showed that at N = 24 and N = 48, the differences in the compensating loads (see Fig. 3) at 
individual points reach 6%. At the same time, when calculating stresses and displacements, 
the difference does not exceed 3%, which is due to the Saint Venant principle. The results 
presented below were obtained at N = 24. 

We now turn to an analysis of the effect of the parameters of the method of compensating 
loads on the value of the deficiency of the boundary conditions (4) on the interval  ,a b
with the exception of the collocation points A and B, where these conditions are satisfied 
exactly. Let us consider the problem of calculating homogeneous cylinder loaded with an 
external constant pressure bp p  with rigidly clamped (built-in) ends. Note that when 

considering an elongated cylinder whose height is equal , the pressure p is applied 
to the section . The corresponding formulas for the coefficients of the expansion of 

this load in a Fourier series have the form: ,0 / ;bp pH H   
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, where . 

Calculations were made for the cases when the compensating loads are represented as a 
linear function, quadratic and cubic parabolas, to which correspond to the values of the 
parameter   entering in (5) equal to 1, 2 and 3. 

In addition, the depth of the "fixed 
edge"  within the range of 0,05Н  
0,5Н varied in the calculations., as 
well as the location of the collocation 
points, which were selected along the 

borders of the sections to which the integration interval  ,a b was divided. For M = 20, the 
number of borders of the sections is 21. Fig. 5 shows, as an example, the location of the points 
A and B at points with the numbers  and . 

An analysis of the discrepancy between the boundary conditions on the layer z  was 

carried out by comparing the largest displacements of the compensating loads cu and cw  on 

this layer with the largest displacements pu  in the middle section of the cylinder from the 

pressure p (the displacements pw are negligibly small in comparison with pu ). A similar 
analysis was also conducted with respect to the choice of the optimal value and the depth of the 
"fixed edge" . It is established that the smallest discrepancy between the boundary conditions 
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          Fig. 5. Arrangement of collocation points 
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is reached at = 2. As regards the influence on the displacements of the points of the layer 

, the largest displacements in this layer at remain practically constant (Fig 6). 

At the same time, within the range of 0.05H  0.5H, the stresses change significantly. For 

the function z z p    asymptotically approaches some limiting values.   

Fig. 7 shows the graphs of the variation stresses z  along the axis z on the inner and 

outer surfaces of the cylinder, calculated with the following initial data and calculation 

parameters: H=2m; a=0.5m; b=1m; 42 10 MPa;E   0.2;  0.2;   ; 24M  ;
2  ;  1m;   the collocation points are 1 and 21. In the same figure, the values of the 

stresses in the cylinder with the hinged (sliding) support of the ends are shown in dotted lines. 
In the latter case, as noted above, the problem corresponds to a flat deformed state, and the 
stresses are constant over the cross section (see (8)), and they are identical in all cross 

sections. 

  

Fig. 7. Changing stresses z along the axis z  
in the cylinder with:  - - - - sliding support of 
the ends;               rigidly clamping ends. 

Fig. 8.  Deformed state of the cylinder, 
- - - - sliding support,          rigidly clamping ends, 
 • - the inflection points. 

 
In order to fully appreciate the difference in the results obtained in solving two problems, 

we consider the deformed states of cylinders with hinged support of the ends and with rigidly 
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z
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Fig. 5.  Fig. 6. Dependences stresses z  from  at different values  . Collocation points: 1 and 21. 
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clamped ends (Fig. 8). At the collocation points ( ,r a b ) in Fig. 8 fixed supports are 
installed. Please pay attention to the following features. The deformation of the cylinder wall 
in the presence of a rigid clamping of the ends is qualitatively similar to the bending of a 
beam with clamped ends. Near the support, tensile stresses are observed from the outside, 
and compression is observed inside. The inflection points indicate a change in the sign of the 
deformations z . Both recent facts agree with the stress plots in Fig. 6. Negative 

displacements at the level 1 0z  are caused by the expansion of the cylinder in the axial 
direction due to the Poisson ratio. 

4 Conclusions 
Comparison of displacements and stresses in a cylinder with sliding support along the ends 
and in cylinder with rigidly clamped ends shows a significant influence of the type of 
boundary conditions on the stress-strain state of the cylinders. In sufficiently tall cylinders, 
this effect will act as a marginal effect, and in short cylinders and cylinders of medium height, 
the influence of the boundary conditions will affect the entire height [9]. 
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