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Abstract. Local damage detection in rotating machine elements is very 
important problem widely researched in the literature. One of the most 
common approaches is the vibration signal analysis. Since time domain 
processing is often insufficient, other representations are frequently 
favored. One of the most common one is time-frequency representation
hence authors propose to separate internal processes occurring in the 
vibration signal by spectrogram matrix factorization. In order to achieve 
this, it is proposed to use the approach of Nonnegative Matrix 
Factorization (NMF). In this paper three NMF algorithms are tested using 
real and simulated data describing single-channel vibration signal acquired 
on damaged rolling bearing operating in drive pulley in belt conveyor 
driving station. Results are compared with filtration using Spectral 
Kurtosis, which is currently recognized as classical method for impulsive 
information extraction, to verify the validity of presented methodology. 

1 Introduction
In mining industry all over the world, belt conveyors are one of the most essential assets of 
horizontal transportation [1, 2]. In underground mining they span over the entire mine 
forming complex network transporting excavated material towards the shaft, while in 
surface mining they can also transport the material over very long distances, up to many 
kilometers. Since conveyors are typically set up in series, failure of one of them can 
effectively stop large portion, or even entire transportation network [3]. Most of the failure 
events are connected to belt itself, which is the most expensive part of the conveyor, or to 
elements of driving station, which includes engines, clutches, gearboxes and numerous 
pulleys that interact with the belt. Most of machines included in driving station are made of 
rotating elements installed on shafts, and such architecture requires using bearings.  

Rolling element bearings are prone to three main types of failure: damage of rolling 
element, inner race or outer race. In most cases local damage of such types results in the 
presence of cyclic impulses in vibration signal, very often invisible in time domain. 
Literature worldwide presents many different techniques for analysis of such signals, e.g. 
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classification with artificial neural networks [4], supervised and unsupervised learning 
techniques [5], filtration with informative frequency band selectors [6, 7], or other data 
exploration techniques [8].

Previous research showed that such impulsive component can be successfully extracted 
using Nonnegative Matrix Factorization (NMF) approach [9-11]. There are however several 
types of NMF algorithm that are characterized with different assumptions and constraints, 
therefore they can produce different results. In practical case it is very useful to be aware of 
such differences and be able to choose the most appropriate method for the analysis of such 
type of data.

In this paper authors analyze real and simulated vibration data measured on ball bearing 
installed in drive pulley. Data is processed with proposed algorithm using three different 
NMF methods. Results are compared based on visual inspection and quantitative statistics 
proposed for the comparison as quality measures. Additionally, performance of algorithms 
is compared with the classical method for vibration signal processing, which is the filtration 
with spectral kurtosis [6].

2 Methodology
Fig. 1 presents the flowchart of the proposed methodology for all investigated NMF 
algorithms. After selecting real or simulated signal as input, method begins with
transformation of the provided signal into a time-frequency representation. Authors use the 
spectrogram, which is a square of absolute value of the short-time Fourier transform 
(STFT). The STFT for discrete signal x0,…,xN-1 is defined as follows [12]:
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where w(t- is a shifted window. Next, we apply the selected NMF algorithm to classify 
vectors of spectra for all timestamps from the spectrogram, which is performed based on so 
called encoding matrix generated by NMF. Such clustering provides K spectrograms where 
K is number of clusters. Finally, method applies the inverse short-time Fourier transform 
(ISTFT) [13] to all selected time-frequency map to obtain the informative signal. To prove
that the proposed methodology is superior to the classical approach, authors propose to 
compare obtained signals and their envelope spectra with signals and envelope spectra after 
Spectral Kurtosis filtration.

NMF algorithms authors selected to be compared in this paper are: Convex NMF [14], 
Semi-Binary NMF [15] and classic NMF [16].
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Fig. 1. Procedure flowchart.

2.1 General model of NMF

Nonnegative Matrix Factorization (NMF) is a family of algorithms in linear algebra and 
multivariate analysis where a nonnegative matrix V is factorized into two lower-rank 
nonnegative matrices W and H (see Fig. 2), hence general model is defined as =

.
Since this problem is not exactly solvable, it is approximated numerically. Such matrix 

multiplication can be understood as computing the column vectors of estimated matrix as 
linear combinations of the column vectors in matrix W using coefficients held by column 
vectors of matrix H. If orthogonality constraint is imposed on matrix H, e.g. = , its 
columns behave as vectors of posterior probability in the sense of clustering problem. Even 
if the orthogonality constraint is not explicitly imposed, orthogonality holds to a large 
extent, as well as clustering effect. Hence, it is recognized that NMF algorithms reveal 
internal clustering properties, and output matrices are called base matrix (W) that contains 
clusters’ centroids, and encoding matrix (H) containing posterior probabilities of data 
points (columns of V or ) belonging to appropriate clusters. Additionally, under certain 
assumptions some NMF algorithms become mathematically or algorithmically equivalent 
to known clustering methods as k-means or probabilistic latent semantic analysis (PLS)
[17].
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Fig. 2. Illustration of approximate Nonnegative Matrix Factorization model. 

Several types of NMF algorithms have been developed over the years, that differ in 
constrains and implementation methods. Multiplicative update rule by Lee and Seung [16]
gained popularity due to simplicity of implementation. Many successful implementations 
are based on alternating nonnegative least squares method, but specific algorithmic 
approaches use projected gradient descent methods [18], active set method [19], optimal 
gradient [20] or block principal pivoting [21].  

First of used algorithms is called Convex NMF. It imposes the constraint that centroids 
contained by the column vectors of base matrix base matrix: 

= ( , … , )       (2)

are limited to conic combinations of column vectors of the input matrix:

= + + = , > 0 , , = 1  (3)

Geometrically it can be interpreted as centroid of a cluster being placed within the 
convex hull of a cluster in p-dimensional Euclidean space.

Second algorithm is called Semi-Binary NMF and is very useful for hard clustering of 
nonnegative data assuming non-overlapping clusters. It assumes that × is 
characterized with the property that:

, : = 1  = 0                                          (4) 
Hence, assuming that J<T, H is a row-orthogonal matrix. In the notion of clustering it 

can be interpreted as assigning data points to appropriate clusters with 100% certainty.
Third and final approach is a classic, unconstrained implementation of NMF with 

Euclidean distance as the objective function, using multiplicative update rules.   

3 Simulated data experiment
Data simulation was aiming to capture general structure of the signal, while being able to 
control the parameters of impulsive component (see Fig. 3). Firstly, Autoregressive Moving 
Average model (ARMA) was used to model the behaviour of the healthy machine. As a 
next step, convolution was used to create damage signal combining healthy component with 
impulsive excitation, which is a 10 Hz comb of impulses contaminated with small amount 
of Gaussian noise to prevent the simulated signal from taking zero values between 
impulses. Amplitudes of impulses were also randomized to introduce more natural 
diversity.
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Fig. 3. Simulation procedure flowchart.

Signal was prepared in a way that it wouldn’t be easier to process than the real one. 
Average energy of the impulses was adjusted so that they are visible but not standing out 
very much in the time series (see Fig. 4). We were also evaluating the spectrogram of the 
simulated signal, so that it wouldn’t end up being easier to work with than the one of the 
real signal (see Fig. 5).

Fig. 4. Time series of the simulated signal.

Fig. 5. Spectrogram of the simulated signal.
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Signal prepared that way was fed into the procedure. Selected partial spectrograms as 
well as recovered time series of informative signal for all algorithms are presented in Fig. 6.
Filtered signals are presented in Fig. 7. It can be seen that along with very satisfying results, 
algorithms perform with similar precision. 

Fig. 6. Selected partial spectrograms and extracted time series for all algorithms. a) Convex NMF, 
b) Semi-Binary NMF, c) Classic NMF.

Fig. 7. Filtered time series for all algorithms. a) Convex NMF, b) Semi-Binary NMF, c) Classic
NMF.
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Another observation regards the amplitudes of output signals. It is clear that for classic Convex NMF 
impulses are roughly 50% weaker in comparison to the other two, which are quite consistent in terms 
of the amplitude. It comes from the fact that in all cases single impulse is not constructed from one 
spectra vector of the spectrogram, but always from a few of them (typically 3-8 slices per impulse). 

Convex NMF selected less slices per impulse than the other algorithms, hence ISTFT procedure 
produced signal with lower amplitude of impulses. It makes this algorithm more precise. 

Fig. 8 Envelope spectra (left panels) and autocorrelation functions (right panels) for all algorithms. 
a) Convex NMF, b) Semi-Binary NMF, c) Classic NMF.

Fig. 8 provides functions useful for cyclicity analysis of the obtained signals. Envelope spectra reveal 
a lot of very clear peaks at harmonic frequencies (multiples of 10 Hz), which is typical for cyclic 
wideband-impulsive signals. Low energy of components between the peaks informs about signal 
clarity and high SNR. Similarly, autocorrelation functions are very similar. They reveal cyclicity 

which can be noticed based on first ~20 lags.

3.1 Comparison to Spectral Kurtosis

Presented algorithms have been compared with well established method of signal filtration 
with the Spectral Kurtosis (SK) that is used as the filter amplitude characteristic. The 
general principle of operation is to calculate kurtosis value for each frequency bin of the 
spectrogram. As a result, one can obtain indicator of impulsiveness across the signal 
spectrum, which allows to determine which frequency bands carry the most visible 
information about the damage-related impulsive behavior. Vector of spectral kurtosis can 
be then used as a filter to extract those impulsive components from the signal. Calculated 
SK is shown in Fig. 9, and filtered signal is presented in Fig. 10. Signal is very similar to 
the input in terms of shape, but its amplitude is significantly lower. It proves that SK-
filtration is not an appropriate method for impulses recovery.
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Fig. 9. Normalized Spectral Kurtosis for simulated signal.

Fig. 10. Simulated signal filtered with Spectral Kurtosis.

Fig. 11 presents functions for cyclicity analysis. Autocorrelation function doesn’t reveal 
any particular behaviour and shows that signal is highly correlated. Although some of the
peaks in envelope spectrum are visible, their amplitudes are not so consistent and 
monotonic as for any of NMF-based results. 
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Fig. 11. Autocorrelation function and envelope spectrum for SK-filtered result.

Frequency components between peaks are also stronger and disrupt the quality and 
clarity of the spectrum. It is also noticeable that after disappearing at about 60 Hz, peaks 
then return at about 130 Hz, just to decrease the amplitude again after a few harmonic 
components. 

4 Application to real data
Presented method has been tested using vibration data from damaged rolling bearing of the 
drive pulley operating in belt conveyor driving station in mining industry. Fig. 12 presents 
time series of recorded signal, and its spectrogram is shown on Fig. 13. Sampling frequency 
is equal to 19.2 kHz for 2.5 seconds of the measurement. Several wide-band excitations are 
visible on the spectrogram at carrier frequency band 1-6 kHz that occur with the 
modulation frequency of 12.7 Hz.
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Fig. 12. Raw input signal.

Fig. 13. Spectrogram of the input signal.

Similarly to the simulation case, signal was analyzed using presented method with all of 
the NMF algorithms. Results are presented in Fig. 14 in the form of constructed selected 
partial spectrograms (left panels) and extracted time series (right panels). 
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Similarly to the simulation case, signal was analyzed using presented method with all of 
the NMF algorithms. Results are presented in Fig. 14 in the form of constructed selected 
partial spectrograms (left panels) and extracted time series (right panels). 

Fig. 14. Selected partial spectrograms and extracted time series for all algorithms. a) Convex NMF, 
b) Semi-Binary NMF, c) Classic NMF.

Fig. 15 presents output signals filtered the same way as in simulated case. This time results are not the 
same. Convex NMF appears to be the least sensitive in comparison to other two algorithms. It 

classifies the smallest amount of impulses and some of them are weaker than for other algorithms. On 
the other hand, Classic NMF is the most sensitive. In case of real data, filtered signals remain on 

similar level of impulses’ amplitude, while in simulated case, Convex NMF produced significantly 
weaker signal.

Fig. 15. Filtered time series for all algorithms. a) Convex NMF, b) Semi-Binary NMF, c) Classic
NMF.
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Fig. 16 provides the functions to determine cyclicity of the output signals. Period is 
frequency detected based on spectra is equal to 12,7 Hz. Autocorrelation functions reveal 
common cyclicity as well. 

Fig. 16. Envelope spectra (left panels) and autocorrelation functions (right panels) for all algorithms. 
a) Convex NMF, b) Semi-Binary NMF, c) Classic NMF.

4.1 Comparison to Spectral Kurtosis

As in the case of simulated signal, we compare the results to the Spectral Kurtosis filtration. 
Vector of SK is presented in Fig. 17 and filtered signal is shown in Fig. 18. 

Fig. 17. Normalized Spectral Kurtosis for real signal.
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Fig. 18 Real signal filtered with Spectral Kurtosis.

In this case, SK filtration made a significant difference to the signal. Most of the 
strongest impulses became visible but energy of the noise is clearly too high, hence a lot of 
impulses are lost in the noise. However, cyclicity analysis does not look that promising (see 
Fig. 19). Behavior of autocorrelation function is not consistent with obtained results and its 
cycle denotes low-frequency modulation visible in the original signal, that is probably 
related to shaft misalignment. Envelope spectrum does not provide satisfying result either. 
Peak of fundamental frequency component has very low amplitude and is difficult to notice 
and interpret, especially for an automatic procedure.

Fig. 19. Autocorrelation function and envelope spectrum for SK-filtered result.
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5 Discussion
To be able to come to objective conclusions, input signals and obtained results have been 
described with quantitative measures presented in Tab. 1., that is:

Signal-to-Noise Ratio (SNR),
Signal-to-noise-and-distortion ratio (SINAD),
Total harmonic distortion (THD),
Kurtosis,
Factorization error defined as Frobenius norm of difference between input 
spectrogram matrix and full spectrogram matrix reconstructed after 
factorization, divided by Frobenius norm of input spectrogram matrix. Of 
course, for input signals and results obtained by SK filtration this error is not 
defined and denoted as 0 value.

6 CONCLUSIONS
In this paper authors present a comparison of selected NMF algorithms’ performance for 
the application of local damage detection based on vibration data. Algorithms have been 
tested using simulated as well as real-life data from damaged rolling bearing operating in 
belt conveyor driving station in mining industry. Authors use previously developed 
processing method that can employed three different NMF algorithm in the same way. 
Results show that algorithm to be selected for such task can be neither too sensitive because 
of false-positive impulses occurrence, nor too resistant, since the information can be lost. In 
considered scenario Semi-Binary NMF algorithm turned out to be optimal for discussed 
analytical strategy.

Table 1. Quantitative measures of obtained results' quality.

SNR [dBc] SINAD [dBc] THD [dBc] Kurtosis Error
Raw signal -1,7589 -2,4163 -6,1024 3,0978 0
Spectral Kurtosis -11,3322 -11,335 -19,7888 15,0115 0
Convex NMF -20,0208 -20,0211 -16,5702 147,1919 0,9288
Semi-binary -21,4136 -21,4136 -20,6512 123,0783 0,9108
Classic NMF -21,3803 -21,0060 -20,4106 128,015 1,1102

SNR [dBc] SINAD [dBc] THD [dBc] Kurtosis Error
Simulated signal -9,1961 -9,2 -18,1437 3,7729 0
Spectral Kurtosis -11,4008 -11,4016 -21,8665 10,0268 0
Convex NMF -20,3613 -20,3659 -8,8795 130,2016 0,9632
Semi-binary -20,4019 -20,4065 -8,8422 204,9253 0,8361
Classic NMF -20,4245 -20,4291 -8,8076 203,5364 0,8933

This work is supported by the Framework Programme for Research and Innovation Horizon 2020 
under grant agreement n. 636834 (DISIRE - Integrated Process Control based on Distributed In-Situ 
Sensors into Raw Material and Energy Feedstock) and Grant no. 0401/0128/17.
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