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Abstract. This paper presents a two-dimensional numerical study to 
investigate laminar flow in a flat plate solar collector with non-circular 
duct (regular polygonal, elliptical, and Cassini oval shape) featuring forced 
convection with constant axial wall heat flux and constant peripheral wall 
temperature (H1 condition). Applying the velocity profile obtained for the 
duct laminar flow, the energy equation was solved exactly for the constant 
wall heat flux using the Boundary Element Method (BEM). Poiseuille and 
Nusselt numbers were obtained for flows having a different number of 
geometrical factors. The results are presented and discussed in the form of 
tables and graphs. The area goodness factor and volume goodness factor 
are calculated. The predicted correlations for Poiseuille and Nusselt 
numbers may be a very useful resource for the design and optimization of 
solar collectors with non-circular ducts. 

1 Introduction  
A flat plate solar collector absorbs incoming solar radiation, converting it into thermal 
energy at the surface of a receiver and heat is transferred to the working fluid through the 
collector. In fact, the collection of solar radiation and its conversion to thermal energy 
depend on the collector design, including factors such as riser shape, absorber material, and 
transmissivity of the glass cover [1]. Simulation of the forced convection in the riser is the 
most essential part of the process of designing a flat plate collector. The problem of 
determining the Nusselt number for fully developed laminar flow with triangular  
cross-section has been solved by Schneider and Ledain [2] using the finite element method 
to solve the momentum and energy conservation equations. Taherian and Yazdanshenas [3] 
made an experimental investigation of forced convection in a finned rhombic tube of a flat 
plate solar collector. Theoretical and experimental investigations of an elliptical heat pipe 
flat plate solar collector were performed by Sivakumar et al [4]. Forced convection heat 
transfer in smooth and roughened rectangular ducts has been studied extensively in 
references [5–9]. Ekramian [1] studied numerically the effect of riser shape on the thermal 
efficiency, finding a collector with circular tubes, had 38.4%, 11.2%, and 6.6% greater 
thermal efficiency than collectors with triangular, square, and hexagonal ducts respectively. 
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Fan et al. [10] analysed numerically and experimentally the flow and temperature 
distribution in a solar collector with a quadrangular absorber tube. Nasrin and Alim [11] 
numerically simulated forced convection in a cross-section of a flat plate solar collector 
with nanofluids, using finite elements with Galerkin’s weighted residual technique. 
Dehghan et al. [12] investigated the effects of radiation heat transfer on the forced 
convective heat transfer mechanism in solar heat exchangers filled with a porous medium. 
Helvaci and Khan [13] analysed multiphase flow in a flat plate solar energy collector. 

The aim of this work is to study the effect of riser shape on the Nusselt number, 
Poiseuille number, area goodness factor, and volume goodness factor for laminar forced 
convection, using boundary element method (BEM). These dimensionless quantities may 
provide the function of screening the selection of a riser shape before other design criteria 
are applied. There exist varieties of flat plate collector with different non-circular  
cross-section such as regular polygonal, elliptical, and Cassini oval. The results obtained 
may lead to the design of more efficient flat plate solar collectors with non-circular ducts. 

2 Mathematical model 
The problem being considered concerns laminar forced convection in solar risers.  
A simplified numerical model based on the boundary element method for fluid flow and 
heat transfer in solar risers is developed under the following assumptions: two-dimensional, 
steady, laminar and constant thermal conductivity k and a constant dynamic viscosity  
 with incompressible fully developed flow, negligible body forces and viscous dissipation, 
and negligible radiation heat transfer. Newtonian laminar fluid flow is governed by the 
usual continuity (1), momentum (2) and energy (3) equations for two-dimensional 
simulations as follows: 
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where uz is the axial velocity, T is temperature, p is pressure, cp is specific heat capacity and 
 is density. The coordinate system and computational domain are shown in Figure 1. 

In the first step the Poisson equation (2) is solved using the boundary element method. 
The velocity is required to satisfy the no-slip condition on the duct wall (uz = 0). Secondly, 
the energy equation (3) is solved for temperature distributions in a cross-section of the duct 
by BEM. The axial derivative  T/  z is independent of the x and y coordinates. The energy 
equation (3) requires the Dirichlet or H1 condition (temperature) and the Neumann or  
H1 condition (heat flux density), and neglects the axial heat conditions in the fluid. In this 
paper the H1 condition is considered: T = const, at Lh (constant peripheral wall 
temperature). The H1 condition has found many applications with negligible normal wall 
thermal resistance [14], such as in tube heat exchangers and in solar energy collection [4, 
13]. Details of the solution of Poisson’s equations (2–3) using the boundary element 
method can be found in the literature [15]. 
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Fig. 1. Schematic diagram of a riser duct in a solar collector. 

3 Analysis and modelling 
The governing equations (2–3) were solved numerically using the boundary element 
method, by means of a computer program written by the author in Fortran, using 4000 
constant boundary elements and 40602 triangular cells in the duct cross-section. To 
determine relative differences between numerical and analytical values, the numerical 
results obtained by BEM were compared with the analytical values of the Poiseuille number 
Po and the Nusselt number Nu obtained by Shah and London [14] for a circular tube. For 
4000 constant boundary elements and 40602 triangular cells in the duct  
cross-section, the maximum relative differences in the Poiseuille number and Nusselt 
number were found as Po = 0.001% and Nu = 0.005%. 

The Poiseuille number defined as the product of the Fanning friction factor f for fully 
developed flow and the Reynolds number Re, can be expressed as 
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where w is the peripherally averaged wall shear stress, um is the mean velocity, and A is the 
cross-sectional area. The Reynolds number is equal to 
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where Dh is the hydraulic diameter, and Lh is the wetted perimeter of the duct cross-section. 
The Nusselt number is defined as 
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where Tw is the wall temperature, Tb is the bulk temperature, and qw is the wall heat flux 
density. In fact, the fully developed laminar Nusselt number is found to be independent of 
the length of the duct, the Prandtl number Pr and the Reynolds number Re, but dependent 
on the duct geometry and boundary conditions [13, 14]. 

The considered non-circular geometries include several common shapes, such as regular 
polygons, ellipses and Cassini ovals. Shah and London [14] provided an analytical 
relationship for the Poiseuille number and Nusselt number versus the ratio of the minor axis 
A to the major axis B. This analytical relationship contains an elliptic integral of the first 
kind, which can be computed using numerical integration. Shahsavari et al [16] and 
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Teleszewski and Sorko [17] provided numerical relationships for the Poiseuille number and 
Nusselt number respectively, depending on the number n of sides. No compact relationship 
has previously been found for the Poiseuille number and the Nusselt number for Cassini 
ovals. In this paper, a compact relationship for Po and Nu for ellipses, regular polygons and 
Cassini ovals versus a geometrical factor , with correlation coefficient R2  1, is proposed: 
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where the coefficients a, b, c, d, e, f, g, h, i, n are given in Table 1. The factor  represents 
the ratio of the minor to the major axis for an ellipse (= A/B), the number n of sides for  
a regular polygon (= n), and the ratio of the coefficients C and D in the Cassini oval 
equation (= C/D). Equation (7) is more compact and can predict Po and Nu values for 
regular polygonal, elliptical and Cassini oval ducts with an uncertainty less than 0.2%.  
A Cassini oval is defined as 
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where  is the angular coordinate. 
Table 1. Coefficients of equation (7) to determine the Poiseuille and Nusselt numbers. 

Coefficients of equation (7) to determine the Poiseuille number 

shape a b c d e 

polygonal 15.45392 -27.24564 17.31518 -4.11344 0 

ellipse 19.739 -31.3853 74.6744 -76.4 52.576 

Cas. oval 16.012 -33.43074 12.0508 12.5435 -7.17415 

  f g h i m 

polygonal -1.73499 1.0846 -0.257136 0 1 

ellipse -1.5874 3.7212 -3.0711 2.3876 1 

Cas. oval -2.08368 0.61023 1.05387 -0.58033 4 

Coefficients of equation (7) to determine the Nusselt number 

  a b c d e 

polygonal -11.1816 0 2.2561 0 4.8055 

ellipse 5.2251 -11.1214 31.7343 -36.338 22.0829 

Cas. oval 4.3636 -14.7687 18.6452 -10.3976 2.1576 

  f g h i m 

polygonal 0 0.52438 0 1.1011 1 

ellipse -2.1272 6.0374 -6.3329 4.0771 1 

Cas. oval -3.39323 4.23613 -2.2834 0.440526 4 
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Plots of Po and Nu for various values of  are shown in Figures 2a and 2b respectively. 
Similar trends are observed in both cases. The highest values for Nu are observed for the 
Cassini oval with geometrical factor = 0.945. In Table 2, the Poiseuille and Nusselt 
numbers are presented for a Cassini oval duct for some values of the geometrical factor  
= C/D. 
 

      
Fig. 2. Plot of Nu (a) and Po (b) vs . 

The 2D dimensionless velocity u/um and the dimensionless temperature distribution 
T/|Tb| with the heatline through the Cassini oval are shown in Figures 3a-b and 4a-b for 
different values of the geometrical factors: = 0.85 and = 0.945 respectively. As Figures 
3a and 4a show, the maximum velocity and minimum fluid temperature occur at the centre 
of the Cassini oval with = 0.85. In Figures 3b and 4b, for a Cassini oval with geometrical 
factor = 0.945, it is interesting to observe that two points of maximum fluid velocity and 
two points of minimum fluid temperature lie on the axis of symmetry y = 0. 

 

        
Fig. 3. Dimensionless velocity u/um obtained from the BEM solution for a Cassini oval duct with 
different values of : (a) = 0.85 (Po = 17.64); (b) = 0.945 (Po = 18.88). 

 

        
Fig. 4. Heatlines and dimensionless temperature T/|Tb| obtained from the BEM solution for a Cassini 
oval duct with different values of : (a) = 0.85 (Nu = 5.00); (b) = 0.945 (Nu = 5.66). 

)a )b

)a )b

)b)a
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Table 2. Poiseuille number and Nusselt number for some values of the factor = C/D for a Cassini 
oval. 

Poiseuille number and Nusselt number vs. = C/D for Cassini oval 

= C/D 0.2 0.4 0.6 0.8 0.945 0.98 

Po 16.01 16.06 16.30 17.18 18.88 18.60 

Nu 4.37 4.38 4.44 4.77 5.66 5.28 

4 Results and discussion 
Two classical types of comparison methods for shaped risers have been considered: area 
goodness factor [14] and volume goodness factor [14, 18, 19]. 

In order to compare the thermal performances of riser shapes, it is possible to use the 
area goodness factor [14], which is the ratio of the Colburn factor j and the Fanning friction 
factor f, defined as: 

1/3G= , Pr
Pr

pcj Nu
f kPo


       (9) 

where Pr is the Prandtl number. However, for fully developed forced convection through  
a straight duct, both the Poiseuille number Po and the Nusselt number are independent of 
the Prandtl number Pr. Therefore, for this parameter, one may consider only the variations 
Pr1/3G= Pr1/3j/f =Nu/Po as functions of the shape factor. This form of the area goodness 
factor was introduced by Ray and Misra [20]. The dimensionless area goodness factor is 
independent of the hydraulic diameter Dh. The area goodness factors of collectors with 
regular polygonal, elliptical and Cassini oval ducts as functions of the geometrical factor  
 are presented in Figure 5a. A higher area goodness factor is considered desirable because 
it means that a lower flow area is required for the riser [14, 21]. Figure 5a shows that the 
Cassini oval risers with = 0.945 have an area goodness factor 28.5%, 18.2%, 13% and 
9.9% greater than those of the collectors with triangular, square, elliptical = 0.1, and 
circular riser tubes, respectively. In fact, for the duct geometries having strong corner 
effects, the area goodness factor is even lower than for channels without sharp corners [14]. 

         
Fig. 5. Comparison methods for riser shape selection: (a) variation of area goodness factor the 
geometrical parameter factor , (b) volume goodness factor vs. Reynolds number for several riser 
shapes. 

)a )b
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Another comparison method was suggested by Shah and London [14, 18, 19], using the 
volume goodness factor VGF as defined by the following equations: 

1/3

St Nu, St=
RePr

VGF
f

       (10) 

where St is the Stanton number. This factor is used for comparing different heat exchangers 
[18, 19, 21]. The higher VGF is required the smaller heat transfer. The volume goodness 
factor is plotted as a function of the Reynolds number in Figure 5b for triangular (= 3), 
square (= 4), elliptical (= 0.1), circular (= 1000) and Cassini oval (= 0.945) risers.  
The simulations were performed for 50% propylene glycol mixtures with constant physical 
quantities (Tw = 50°C, = 0.002 Pas, k = 0.4 W/(mK), = 1025 kg/m3 and  
cp = 3480 J/(kgK)). In Figure 5b the Cassini oval shape with = 0.945 demonstrates higher 
volume goodness factor than other geometries. Figure 5b shows that the Cassini oval risers 
with = 0.945 have an volume goodness factor 62%, 57%, 10.3% and 22.7% greater than 
those of the collectors with triangular, square, elliptical = 0.1, and circular riser tubes, 
respectively. Plots of the area goodness factor (Figure 5a) and the volume goodness factor 
(Figure 5b) show that the best performance is obtained for a Cassini oval with geometrical 
factor   = 0.945. 

Figure 6 is a graphical representation of Nu, Nu/Po and efficiency [1] for regular 
polygonal ducts versus the number n of sides. In Figure 6, a similar increasing trend is 
observed for efficiency versus n [1], as for Nu, and Nu/Po. 

 
Fig. 6. Plot of Nu, Nu/Po, and efficiency [1] vs. n for regular polygon. 

5 Conclusions 
This study has focused on fully developed laminar forced convection in regular polygonal, 
elliptical and Cassini oval riser ducts in solar collectors. A simple compact correlation 
between the Poiseuille number and Nusselt number versus a geometrical factor  has been 
proposed for these riser shapes. The flow is modelled by two-dimensional momentum and 
energy equations with H1 boundary conditions. The steady state model has been solved 
numerically using the boundary element method. This is the first time that a relationship for 
the Poiseuille number and Nusselt number vs. geometrical shape (= C/D) has been 
computed for the Cassini oval. The influence of the analysed non-circular riser shapes on 
thermal performance was investigated. The results show that the optimum solution for the 
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considered non-circular geometries is a Cassini oval with = 0.945. The results obtained 
may be utilized in the optimization of riser geometries. 

 
This scientific project was financed by S/WBiIS scientific research funds at Bialystok 
University of Technology. 
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