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Abstract. An adaptive linear model predictive control strategy is 
introduced for the problem of demand side energy management, involving 
a photovoltaic device, a battery, and a heat pump. Moreover, the heating 
influence of solar radiation via the glass house effect is considered. Global 
sunlight radiation intensity and the outside temperature are updated by 
weather forecast data. The identification is carried out after adapting to a 
time frame witch sufficiently homogeneous weather. In this way, in spite 
of the linearity an increase in precision and cost reduction of up to 46% is 
achieved. It is validated for an open and closed loop version of the MPC 
problem using real data of the ambient temperature and the global radiation. 

1 Introduction 

Recently, the inclusion of continuously changing electricity market price variability in 
predictive modelling of efficient demand side energy management including heat pump 
operation has been studied under the assumption of the customer's ability to shift energy 
load [4]. In energy management using weather forecasts, model predictive control (MPC) 
has previously been identified as superior over non-predictive methods [3, 4, 12]. So far, 
however, there has not been any work including the photovoltaic devices, the heat-pump, as 
well as the solar global radiation altogether in the optimization. We show that this is 
possible within a purely linear, adaptive MPC approach. 

1.1 Previous Work related to adaptive MPC  

A quickly growing body in the literature on model predictive control (MPC) has established 
this method as a state of the art technique to solve control problems for deterministic 
systems as well as systems with uncertainty showing its superiority over conventional 
control loop feedback mechanisms (such as PID) [10]. Closed loop stability analysis has 
now since long been studied with MPC for non-linear systems (e.g. [13, 16]).   For 
domestic energy management of heat energy this method has been successfully applied in 
both in open and closed loop instances [4, 6, 11]. Adaptive MPC techniques, however, in 
which the recursive estimation procedure systematically adapts the choice of model 
according to some recursive strategy have only recently gained a similar amount of 
attention ([7]; [10] 3.4).    
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1.2 Our strategy 

By adopting a two-phase view of the control problem ([2], 6.1), we introduce a method 
solving a purely linear closed-loop optimal control problem with an adaptive strategy for 
the parameter estimation of the underlying dynamic constraints. More precisely, we use a 
linear program with cost function taking into account the return temperature together with a 
‘comfort-parameter’ λ, and corresponding required power p with a (time-changing) cost 
parameter ξ. Furthermore, photovoltaic and stored electric power is included in the cost 
function while the battery state of charge is modelled by another linear dynamic constraint. 
At every instant t when an optimization is carried out, the data for the SI is used from a 
period starting at some suitably chosen time s in the past. Since these parameters determine 
the resulting optimal control (the applied power p and therefore also the temperature T), the 
proposed scheme solves an adaptive control problem.    
 

 

2 Experimental setup 

Our model is based on the assumption of there being a linear relationship between the 
return temperature and the desired room temperature. The reason is the availability of 
measured values of the return temperature (due to there not being any temperature sensors). 
Also, the room temperature would have to involve either a more sophisticated building 
model or more sophisticated assumptions about its role in the model. 

2.1 Available Data and Consequence for Model 

 
    We are using data collected by the control unit of an end user heat pump in Austria for 
the return temperature, the electrical power used to drive the heat pump, and the outside 

 

 
Figure 1: Energy flow diagram for PV, battery, heat-pump, and global solar radiation. 

 
Figure 2: Return temperature data (black) (regularization from the temperature sensor of a heat pump) 
and its electrical power (green). The ambient temperature (red) on the same scale as the global 
radiation (magenta) [1], shown as used here. Note drastic cool-off at beginning of October. The 
`current’ moment t is the dark vertical line: 09 Oct 2016, at 00:00 a.m., moment r is 24 hours later. 
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temperature: The solar global radiation data was provided by [1] from Linz (143km). While 
it would be more desirable to have a direct description of the dynamics of the room 
temperature, it is usually not available in domestic heating systems as generic temperature 
sensors are not standard equipment. We therefore propose a theory using the return 
temperature of the heater representing the global heat of the whole building: by assuming a 
linear relationship between the room temperature and the return temperature. 
 
Table 1. Parameters and Variables: T, SOC and `decapitalized’ powers are subject to optimization.   

2.2 The linear model representing the building 

Instead of using criteria for the thermal storage of the given building architecture [4] we 
choose a simple model of the amount of heat delivered to the building which only uses the 
heating system's return temperature as a general, collective measure for all the whole heat 
transfer into the building. Using the assumption of a linear system equation of the 
underlying building model, the exponential cool-off rate a will be assumed to be piece-wise 
constant in time. Another parameter, b, representing the linear relationship between the 
thermal power  and the increase in return temperature  (where є is the heat 
pump's coefficient of performance COP, which depends only on the outside temperature) is 
characterising the building. A third parameter ( ) describes the influence of the global solar 
radiation (glass house effect) on the change of the room temperature (𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

′ = 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,0
′ + 𝑐𝑐𝑐𝑐) 

and, in turn, on the return temperature T (under the assumption of a linear relationship 
between these two). This is modelled by the linear ODE with parameters a, b, c 
 
        𝑇𝑇′(𝑡𝑡)   =   𝑎𝑎 (𝑇𝑇𝑎𝑎(𝑡𝑡) − 𝑇𝑇(𝑡𝑡))  +  𝑏𝑏 𝜖𝜖(𝑇𝑇𝑎𝑎(𝑡𝑡)) 𝑝𝑝𝐻𝐻𝐻𝐻(𝑡𝑡)   +  𝑐𝑐 𝑐𝑐(𝑡𝑡).      (1) 
 

    We will use a discretized (difference-) equation of (1) over a suitably chosen time-
interval [𝑡𝑡0, 𝑡𝑡]. The block diagram (see Fig.6) shows the two different used modes (i. open-
loop, and ii. closed-loop, [11]) distinguished in terms of whether the output prediction of 
the optimizer is used in the subsequent system identification step. In other words, the 
optimization results from the future is used to perform a comparison of the resulting 
identification of the parameters with simpler estimations. The decision variables of the 
optimiser (Opt) are the set of powers (battery charge/discharge and electric heat-pump 
power) together with the resulting state of charge (SOC) and return temperature of the 
heating system. Their history is also used as predictor variables in the system identification 
(SI) stage via (1). The prediction �̂�𝑝 of the optimal powers from the optimiser yields a 
direct control directive for the use of battery and heat pump. Furthermore, the two modes 
for the usage of these two stages' output variables are: i.) Open-loop: This mode simply 
uses the results of the system identification estimation process to determine the optimal 
length of the time interval of the considered data of p, SOC and T, from the past. Statistics 

Variable Description Respective Units 
 State of Heat Pump Watt, degree Celsius  

 State of Battery Watt (2x), percentage of 
maximum load 

 Domestic Load, Photovoltaic 
Power Watt (2x) 

 Ambient Temp., Glob. Radiation degree Celsius, Watt per sq. 
meters 

 Parameters of Linear Building 
Model 

Cents per degree Celsius, 
Cents/KWh (2x)  
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determining the quality of the parameter estimation, only, are used when making the 
decision of which past to consider. ii.) Closed-loop: In this mode, the result of the 
optimizer is fed back into the system identification process. The data which is used to carry 
out   the system identification is augmented with the optimal solution, giving a new 
estimate of the system-parameters a, b and c. Given convergence, the iteration of this 
process leads to a self-consistent solution for parameters and optimal control of the heat 
pump and battery. We determine the advantage of using closed-loop mode by comparing 
the cost of the resulting strategies (the 'energy bill').  

 

2.3 Adaption: Criteria for model selection 

Adaptive MPC allows for switching adaptively to a different model during operation. In the 
present case, we define for each choice of a measuring procedure in the system 
identification there to be a corresponding (building) model.  The set of considered models 
only differs in the domain of data on which the identification process is carried out. Data is 
considered only with timestamps from the interval [s, t], where t is the present moment (a 
fixed parameter representing the end of the domain). Therefore the model class(=: ) 
considered for predictions of optimal heat pump and battery usage at time t is parametrized 
by the variable s ranging over times up to t. We now adopt the view (Fig. 3) of there being 
an interval of the past [s, t] (up to the present t), and an interval of the future [t, r]. Now, in 
order to determine the best criteria for selecting the right model at time t among the many in 

 (with different lengths of the interval [t-s]), we use, for a given significance level α>0, 
the hypothesis                and define the time τt (α) (in the past, i.e. before t)               

   𝜏𝜏𝑡𝑡(𝛼𝛼)  =  sup{ 𝑠𝑠 < 𝑡𝑡 ∶  H0 is rejected under significance level 𝛼𝛼 }.       (2) 

 is the LS-estimator [14] of the parameters  on the interval . The fact that 
 are future predictions make  depend on the optimal solution  determined by 

the optimization (see Fig. 3). On the other hand, this optimal solution depends on the 
parameters delivered by the least square estimation carried out on . This circular 
dependence is the basis for the closed loop mode of the MPC problem, where an initial 
value for  is picked by hand, when no optimal solution has yet been calculated. We are 
using the multivariate two-sample Hotelling test. Even though it proves useful to apply 
univariate two-sample tests (such as the Welch test or the t-test) for each parameter (a, b, c), 
separately (enabling to set separate thresholds), it is then not clear how to combine the 
resulting distinct time-ranges into a single choice of s.  So, after choosing a level of 
significance  for whether each multivariate parameter mean  on  deviates     

significantly from that on [t, r] (1 day), we measure the p-values from our data for every 
(discrete) s in a properly chosen maximal interval (three weeks) before t. A p-value smaller 

 

 
Figure 3: Mutually dependent weather data and optimal solution: s depends on opt. solution and v/v. 
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than the given threshold indicates significant deviance of the future's mean from the mean 
of the past for the specific value s.  

3 Optimisation  

When including the photovoltaic facility in the domestic energy model together with a 
battery, the relationship between the SOC and the charging power plays a role similar to 
that of equation (1), namely between the return temperature (reflecting the accumulated 
heat content) and the electric power used to operate the heat pump: 
 
                  𝑆𝑆𝑆𝑆𝐶𝐶′  =   𝜂𝜂1 𝑝𝑝𝐵𝐵

𝐶𝐶 −  𝜂𝜂2𝑝𝑝𝐵𝐵
𝐷𝐷                      (3) 

where 𝜂𝜂1 and 𝜂𝜂2 (set to 0.9 in the experiment) are the (constant in time) degrees of 
efficiency of the charging and discharging module, respectively.  

 

    We formulate a linear program with an objective function with two terms, one of 
which realises the modelling of the heat pump and one which belongs to the battery/PV 
device. The decision variable into which both of these terms enter is the power 𝑝𝑝𝐵𝐵 =
𝑝𝑝𝐵𝐵

𝐶𝐶  − 𝑝𝑝𝐵𝐵
𝐷𝐷, related to charging (C) and discharging (D) the battery. We start with the 

balance of energy flows derived from the schema shown in Fig. 1. The power required from 
the grid during the i-th elementary time interval is given by 
 
                    (4) 
 

 

 
Figure 4: End user heat pump data of return temperature, electrical power used to drive the heat pump, 
and ambient temperature: The solar global radiation data was provided by [1] from Linz (distance to 
Stockerau 143km). Left & Middle: Initial return temperatur (blue, thick line) of 28.5 deg. Celsius is 
increased to over 30 degrees Celsius in early morning to cope with condition of first (high) minimal heat 
load shortly after 20 time units. The positive surplus power (red) as a result of high global radiation 
(cyan) indicates ability to feed energy into the grid. Right Column: Parameter a larger by a factor of 1.2 
yields increase of cost by 5.2%, as morning high minimum heat demand isn't 'overcome' by first heating 
up and then cooling off (while pHP =0: see blue, thin line in lower left diagram). 
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The de-capitalized letters refer to decision (optimization) variables, the capitalized ones are 
fixed, given functions obtained from measurements. The objective function is 

  (5) 

    The second term bears a new parameter, λ, which measures the amount of money the 
user is willing to pay for an increase of the temperature by one degree Celsius during a unit 
time interval (cmp.[]). In this form the problem is a mixed integer program. Considering the 
large number (n=96 for so many 15 min intervals per day) of degrees of freedom and the 
absolute value sign of the temperature term it is advisable to switch to the following linear 
form with two additional degrees of freedom (u and v): F(u,v) = ∑ (𝑢𝑢(𝑖𝑖) + 𝑣𝑣(𝑖𝑖))𝑛𝑛

𝑖𝑖  subject 
to the following constraints u(i) ≥ ξP(i)Δp(i) and u(i) ≥ ξS(i)Δp(i) with ξP(i) the purchase 
prices, and ξS(i) the selling price at time  i є {1, …, n}. Also, the constraints v(i) ≥ λ (T(i)  
-  Texp(i)) and v(i) ≥ λ (Texp(i)  - T(i)) hold to realise the positivity of the absolute value 
|Texp - T |. Other constraints include the linear system dynamics (1) and (3), as well as hard 
boundaries of the involved decision variable intervals. As an example for the sensitive 
nature of the optimal solution on the parameters, consider the pair of solutions in Figure 4, 
and 5: The return temperature  is given the freedom to range between the margins of a 
'rule-of-thumb' temperature (red) from a custom-set 'heat curve' H0 (pink, Fig.4):  

, with margins of 2 degrees below and 4 degrees above.                                                                                         

4 System identification 

4.1 An MPC problem in Open-loop and Closed-loop mode 

After it has been established that there is high sensitivity of the optimal solution on the 
parameters (a,b,c), we show how (5) may become a closed-loop identification problem. 

       

Figure 5: Block diagram showing the control loop with open-loop (i.) and closed-loop (ii.) mode.  
    The 'weather data' of the ambient temperature Ta and global radiation I is needed both 
in the system identification (historical data), as well as in the optimization (forecast). Once 
the forecast for battery  and return temperature T is available, they can either be 
passed on to the devices as the final result (i. open-loop), or they are first reused in another 
SI step (ii. closed-loop). Namely, the fitting of the parameters may now occur on the 
extended time-interval of the historical (p,T)  data together with the future interval holding 
the optimizer's optimal prediction (�̂�𝑝, �̂�𝑇). We now present the results for the two different 
modes (Fig..5; compare with [14], Chap. 13.4): i.) Open-Loop: In this case, a separate 
system identification process is first carried out, before the resulting parameter estimates 
are used for the optimal choice of power used in the heat pump and for/by the battery (the 
corresponding temperature and state of charge variables follow from integration of the 
system equations (1) and (3)).  ii.) Closed-Loop: For each instance t for which a prediction 
of an optimal power and battery use over a future interval is demanded, an iterated 
sequence (6) of system identification and optimization stages is carried out (once with and 
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once without I) using a `mixing parameter’ q. Using the value of the objective function we 
break-off at step 4 of the iteration-procedure if it doesn't lead to further reduction of the cost:       

     (6) 

4.2 Results and Conclusion: Several approaches to reduce cost 

For some given significance levels , we report the interval length t – τt(α) obtained from 
available data for a specific example. In other words we calculate the maximum number of 
days possible to reach back in time to perform the proposed system identification and 
optimization procedure without significant differences in the distribution of estimated 
parameters on the two intervals [s, t] and [t, r]. We use our Stockerau-data for the first 3 
weeks in October 2016 using the Benjamini-Hochberg [5] correction for multiple tests for 
(2). Our interval in the future is |r - t| = 24 hours, the forecast is made at midnight. The 
selling price of electrical energy into the grid is 3 Cent/Kwh. The purchasing price has been 

Table 2. Results of interval size 𝑡𝑡 − 𝜏𝜏𝑡𝑡(𝛼𝛼) (=Days, left cell) and cost reduction (right cell) for i.) 
open loop and ii.) closed loop mode, with global radiation (I) and without (here c=0). The percentages 
refer to cost reduction in comparison with the case where s is categorically chosen to be 21 (=∞, 
corresp. to α=0). All cost is given in Cents where λ = 0.1 Cent / (15min deg Celsius) has been used. 

chosen to be 20 Cent/KWh (which is the approximate effective cost at a formal advertised 
price of about 6 Cent/KWh).  As the weather forecasts on the future interval [t, r] we use 
the exact values ('perfect weather forecast'). As the break-off criterion of the closed-loop 
procedure we check if the objective function (cost) continuous to decrease. For the period 
of Fig. 2, triples (𝛼𝛼, 𝜏𝜏𝑡𝑡(𝛼𝛼), Cost(𝛼𝛼)) with τt(α) in days, and cost-reduction in % of the 
𝛼𝛼 = 0 case) are given in Table 2 for q=0.1. As seen in Figure 2, this aligns with a strong 
temperature drop and decrease in global radiation around 4 October 2016. The numbers in 

 i.) Without I i.) With I ii.) Without I ii.) With I 

 Days | Cost/ % Days | Cost/ % Days | Cost/ % Days | Cost/ % 
0.00 21 605/ 0 21 600/ 0 21(0) 605/0 21 600/0.0 

0.001 21 605/ 0 21 600/ 0 18(2) 347/43 18(2) 344/42 
0.002 20 443/27 21 600/ 0 14(4) 374/38 12(2) 378/37 
0.01 16 420/31 17 378/37 13(3)     377/38  12(2) 370/38 
0.02 15 427/29 15 424/29 11(3) 326/46 11(3) 324/46 
0.05 13 377/38 13 379/37 11(2) 326/46 11(2) 324/46 
0.1 12 349/42 12 346/42 12(1) 349/42 12(1) 345/42 

0.2 11 326/46 11 324/46 11(1) 326/46 11(1) 324/46 

0.3 10 372/39 10 369/39 8(2) 372/39 8(2) 344/43 
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parentheses in the table refer to the number of closed loop cycles, of which the maximum 
has been chosen to be 20.  

    From these results it becomes clear that the adaptability of the linear model 
representing the building has strong saving potential (> 40%, in this example). The 
inclusion of the global radiation term involving the intensity I of the global radiation in the 
model increases the saving potential for the given example by 2 to 5%. Furthermore, 
applying the hypothesis testing systematically (with the BH-correction, which adds some 
uncertainty in the localization of the weather change), it shows that there is an optimal 
significance level α in terms of cost minimization. We note that the actual cost reductions 
seem to occur in the vicinity of strong input weather data changes (here, about 10 days 
before t). Finally, the application of a closed loop mode (9) with a cost sensitive break-off 
criterion may give further cost reduction or reduction in the necessary length of the past [s, t] 
used for the System Identification. Our conclusion is that the use of an adaptive MPC 
approach for domestic energy management is suitable for reacting to drastic weather 
changes when remaining within a purely linear framework of optimisation and building 
model is necessary (as in the case of large scale problems). 
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