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Abstract. The effects of possible climate change on water resources in 
prescribed areas (e.g. river basins) are intensively studied in hydrology. 
These resources are highly dependent on precipitation totals. When focusing 
on long-term changes in climate variables, one has to rely on station 
measurements. However, hydrologists need the information on spatial 
distribution of precipitation over the areas. For this purpose, the spatial 
interpolation techniques must be employed. In Czechia, where the addition 
of elevation co-variables proved to be a good choice, several GIS tools exist 
that are able to produce time series necessary for climate change analyses. 
Nevertheless, these tools are exclusively based on commercial software and 
there is a lack of free-of-charge tools that could be used by everyone. Here, 
selected free-of-charge geostatistical tools were utilized in order to produce 
monthly precipitation time series representing six river basins in the Ore 
Mountains located in NW Bohemia, Czechia and SE Saxony, Germany. The 
produced series span from January 1961 to December 2012. Rain-gauge data 
from both Czechia and Germany were used. The universal kriging technique 
was employed where a multiple linear regression (based on elevation and 
coordinates) residuals were interpolated. The final time series seem to be 
homogeneous. 

1 Introduction 
In hydrological studies dealing with climate change and its effect on water resources, the 
need of having long precipitation time series is of primary focus because precipitation is 
generally thought of as a basic source of water in many regions. This particularly applies to 
the territory of Czechia, for instance, which is known to be a source area of many European 
rivers, while, in fact, no large river crosses this country that would be, on the other hand, 
beneficial in cases of prolonged drought occurrences. Furthermore, hydrologists prefer to 
have the information on spatial distribution of precipitation during rainfall events or, more 
generally, of their means in different places in prescribed time horizons. However, 
traditionally, the precipitation totals were (and still are) measured at selected points where 
rain gauges were established. It is clear that this was for economic reasons because we are 
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not able to measure everywhere, and it was also found that, in the special case of the mean, 
it is not necessary to have too many stations spread over an area of interest because there is 
a limit above which one cannot reach desirable increment of information (e.g. [1]). Radar 
and satellite precipitation data can be treated only as auxiliary because these measurements 
started much later (usually in the 1980s) than rain-gauge observations. Therefore, it is 
necessary to come up with a method capable of estimating the spatial distribution of 
precipitation using the point records. 

For these purposes, spatial interpolation techniques evolved in the past and, especially, 
the field of geostatistics emerged. Geostatistical applications are not new in hydrology. 
Rather, it can be said that hydrologists alongside hydrogeologists importantly contributed to 
the development of geostatistics (e.g. [2–5]). Groundwater hydrologists were probably the 
first who applied methods of geostatistics but, naturally with the rise of the attention paid to 
climate change, the shift towards applications to surface water problems and climatology is 
evidenced by many papers published in the past few decades (e.g. [6,7]). Besides commercial 
software, the geostatistical techniques were also implemented in freely available tools, which 
is beneficial to students and other scientists who cannot pay much for them. Thus, the present 
contribution aims to show how selected tools can be wisely utilized in order to provide 
valuable information that can be further used in different studies dealing with climate change. 
The issue of spatial interpolation of precipitation totals in the Ore Mountains located in 
Central Europe served as an example. 

The Ore Mountains stretched along the borders between NW Bohemia, Czechia and SE 
Saxony, Germany are known to be one of the regions that are sparsely measured regarding 
precipitation. Also, many gaps occur in time series representing points. This naturally poses 
many issues to hydrologists studying climate change impacts on small mountainous basins 
here. Therefore, the task was to estimate reliable time series suitable for climate change 
studies for selected more or less anthropogenically uninfluenced small river basins. Although 
so-called technical precipitation series do exist in Czechia that are uninterrupted in the daily 
time step and should be homogeneous (see [8–10]), similar data could not be gathered from 
Germany. For this reason, the monthly time step was selected as basic that still allows one to 
study changes in the annual course of precipitation. The selection of suitable basins was made 
based on the existence of relatively long discharge series so as to also allow for the 
comparison of long-term patterns in both precipitation and discharge in some of the future 
works. 
Table 1. Basic morphometric characteristics of six selected small river basins/catchments located in 

the Ore Mountains and delineated by the water-gauging stations represented by long discharge series. 
Crosses indicate the east. For the definition of Graveli coefficient see [11]. 

Station 
(ID) River Area 

[km2] 

Max. 
elevation 
[m a.s.l.] 

Outlet 
elevation 
[m a.s.l.] 

Mean 
elevation 
[m a.s.l.] 

Mean slope 
[decimal 
degrees] 

Graveli 
coefficient 

Klingenthal 
(530020) 

Zwota 
(Svatava) 58.62 930 541 707 9.17 1.52 

Svatava 
(208200) Svatava 291.64 988 406 673 8.81 1.81 

Chaloupky 
(209100) Rolava 20.06 950 815 904 2.28 1.50 

Stará Role 
(210100) Rolava 126.35 1008 392 735 4.43 1.83 

Rothenthal+ 
(568350) 

Natzschung 
(Načetín B.) 75.94 918 540 758 5.56 1.48 

Třetí Mlýn+ 
(218000) Chomutovka 44.91 914 485 770 7.76 1.77 
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Fig. 1. Location of six studied small mountainous river basins in relation to the borders of Czechia 
and the larger Ohře (Eger) River basin. Except for the Natzschung, all investigated rivers are  
left-hand tributaries of the Ohře. All German and Czech rain gauges are depicted from which the data 
were used, but it does not mean that each of them was available for every month during 
interpolations. 

2 Material and methods 

2.1 Area of interest and gathered material 

As described above, smaller river basins located in the Ore Mountains were selected. The 
final selection of six basins was determined by relatively long instrumental observations of 
discharge that was, at the same time, believed to be not influenced, or only slightly 
influenced, by human activities in such places. During processing the accessible material, the 
area of interest was divided into two parts, simply four basins in the western part delineated 
by water-gauging stations 530020, 208200, 209100 and 210100, and two basins in the eastern 
part closed by stations 568350 and 218000. The basic information on the morphometric 
characteristics of these basins is given in Table 1. Note that some of the values provided in 
the table may slightly differ from those officially published (e.g. at 
http://hydro.chmi.cz/ismnozstvi/ or in [12]). This is because the values in Table 1 come from 
the author’s own derivation from the GIS material described further below. The location of 
the basins relative to the borders of Czechia and the larger, and thus better known, Ohře 
(Eger) River basin is depicted in Fig. 1. Two of the western basins, particularly 530020 and 
209100, are in fact the subbasins of the Svatava River basin closed at the profile 208200 and 
the Rolava River basin closed at the profile 210100, respectively. 
 Precipitation totals measured at several rain gauges close to or within the basins were 
gathered from the Czech Hydrometeorological Institute (CHMI) and the German weather 
service called Deutscher Wetterdienst (DWD). Regarding the Czech data, the so-called 
technical precipitation series were acquired with the assistance of their main author Petr 
Štěpánek. These data were in the daily time step, were homogenous and without any missing 
values. They were and still are derived from the originally recorded precipitation series (see 
[8,9]). Since the technical series start on 1 January 1961, all the remaining analyses focused 
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on the period 1961–2012. The year 2012 was chosen arbitrarily, but it was also due to the 
accessibility of the German discharge series from stations 530020 and 568350 (see [12]). 
However, there is no problem with exteding the length of precipitation series towards recent 
times in some of the future works. The German precipitation data were somewhat 
problematic since no technical series (or their equivalent) were available for the purposes of 
this study. Instead, the data published on the FTP server linked to on the website of the 
DWD’s Climate Data Centre (see http://www.dwd.de/) were used. The daily data were too 
gappy and therefore monthly data were rather processed in the subsequent analyses. This 
means that also the Czech data had to be aggregated so that they finally formed monthly data. 
The total number of rain gauges included in the analyses was 32 (west) + 24 (east) = 56, of 
which 18 (west) + 11 (east) = 29 rain gauges represented the German territory. However, it 
is worth noting that the German rain gauges without any data for a given month did not enter 
the interpolation process. 
 Because the chosen interpolation technique required elevation data, a digital elevation 
model (DEM) represented as a grid layer was used to provide the necessary information. 
Most of DEMs available for the territory of Czechia are unfortunately clipped by its borders, 
which is undesirable when investigating river basins that cross the borders. Therefore, an 
alternative DEM had to be used. Here, a somewhat older DEM, downloaded at the end of the 
2000s by the author from the website of the Czech company called ARCDATA PRAHA 
(https://www.arcdata.cz/), served as an elevation input to the geostatistical models. This 
DEM is based on the well-known SRTM product, but it was further processed by ARCDATA 
experts so that a number of possible errors was reduced. The approximate spatial resolution 
of the DEM was 75 m. 
 The last input to the geostatistical models were the geographical coordinates pertaining 
to the rain gauges. This information was provided as the metadata, for the German stations 
available online together with the precipitation data themselves. For the Czech territory, this 
information was acquired from the CHMI’s CLIDATA database or directly from Petr 
Štěpánek. 

2.2 Methods and tools utilized 

All computations were carried out within the environment of the R statistical software [13] 
which is freely available online for all. Besides a number of packages that are intended to 
handle spatial data such as grids and vector features and are helpful when tranforming various 
coordinate systems to a common working system (see e.g. [14] for an overview), mainly the 
functions of packages ‘automap’ [15], which needs the package ‘gstat’ [16–18] to 
automatically perform kriging in general, and ‘MASS’ [19] were applied to the precipitation 
and elevation data and coordinates. It is known that the precipitation totals measured at points 
spread over a mountainous area correlate with elevation, but the correlation is higher if the 
elevation representative of a wider vicinity of a rain gauge is studied instead of the elevation 
corresponding to the place where the rain gauge is situated (see e.g. [20]). Therefore, also the 
‘raster’ package (and its function ‘focal()’; see [21]) had to be applied in order to compute 
mean elevation values representative of places up to 6 and 12 km away from the rain gauges. 
These distances were derived experimentally, while looking at the values of the Akaike 
Information Criterion (AIC; [22]) after bulding multiple linear regression (MLR) models. In 
particular, the package ‘MASS’ was used to determine the values of AIC, which should be 
the lowest for the right model. The package was also helpful when deciding on the 
explanatory variables that should enter the MLR models fed to the universal kriging models 
to which the ‘krige()’ function of the ‘gstat’ package switches according to the formula 
specified. 
 The procedure itself can be summarized as follows: 
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- Having four explanatory variables (E6 – elevation typical of places up to 6 km far from 
a rain gauge; E12 – elevation typical of places up to 12 km far from a rain gauge; X – longitude 
of a rain gauge; Y – latitude of a rain gauge) try to build a MLR model: 

𝑃𝑃 = 𝛼𝛼 + 𝛽𝛽1𝐸𝐸6 + 𝛽𝛽2𝐸𝐸6
2 + 𝛽𝛽3𝐸𝐸6

3 + 𝛽𝛽4𝐸𝐸12 + 𝛽𝛽5𝐸𝐸12
2 + 𝛽𝛽6𝐸𝐸12

3 + 𝛽𝛽7𝑋𝑋 + 𝛽𝛽8𝑌𝑌 + 𝜀𝜀 (1) 

where α and β indicate nine parameters to be estimated (i.e. intercept and different slopes 
specified by the subscripts), ε is the residual component and the superscripts indicate powers 
whose inclusion has been shown beneficial for several mountainous areas (see e.g. [20]). The 
estimated parameters can in turn be used for the derivation of precipitation estimates 𝑃̂𝑃 for 
every cell of the DEM where also the coordinates are known. Here, only two rectangular 
areas for the western and the eastern part of the Ore Mountains were selected (Fig. 2). 
- It is not necessary to have all the explanatory variables in the model. Therefore, using 
the package ‘MASS’ and its function called ‘stepAIC()’, decide which of the variables should 
be included in the MLR model. 
- The model with the lowest value of AIC should enter the ‘autoKrige()’ function, where 
the (semi)variogram is estimated by the generalized least squares (GLS) method based on the 
work [23]. 

 
Fig. 2. Closer look at the area of interest with resulting long-term (1961–2012) grids of annual 
precipitation totals in greyscale separately for the western part and the eastern part of the Ore 
Mountains. Note that some of the extreme precipitation values may be far from true due to the 
absence of rain gauges in some places. However, it is believed that within the catchments the totals 
are much more reliable. 

- Because the maximum number of the explanatory variables here was 8, the minimum 
number of rain gauges, when estimating the value of precipitation for a given DEM cell, was 
9. The maximum radius, where the suitable rain gauges had to be searched, was set to 50 km. 
- Finally, it is necessary to determine the precipitation totals that should represent the 
selected river basins. This may be accomplished using the ‘zonal.stats()’ function of the 
‘spatialEco’ package [24]. 
- Repeat the procedure for all months. Since there were 624 months in the period  
1961–2012 and, in fact, two regions were investigated, the procedure was run 1248 times. 
Because R is known to be relatively slow, the author recommends to parallelize the 
computation for larger data sets. 
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2.3 Homogeneity of produced series 

Climatological time series should be homogeneous, which means that the different measuring 
equipment, the vicinity of a station or changing observers should not have any influences on 
the population from which the time series is drawn. Therefore, it was desirable to test the 
homogeneity of the new precipitation series. For this purpose, another R tool, developed in 
Canada [25], was used. Because this tool works with daily precipitation data, the monthly 
time series were disaggregated to daily, dividing the monthly totals by the corresponding 
number of days, which gave the average totals for every day. Then, the tool could be applied 
to these artificial daily precipitation series. 

Table 2. Long-term monthly and annual precipitation totals (in mm) gained after computing spatial 
means for each month of the period 1961–2012 following universal kriging applied to precipitation 

totals known for rain gauges depicted in Figs. 1 and 2. The computations run separately for the 
western basins and for the eastern basins (these indicated by cross). 

Station/
Season 530020 208200 209100 210100 568350+ 218000+ 

01 80.3 73.8 85.5 75.6 69.8 68.5 
02 67.8 60.7 67.7 60.6 63.7 60.4 
03 73.4 64.1 64.8 62.7 71.8 66.9 
04 61.9 53.4 51.0 49.8 66.4 61.1 
05 74.9 68.9 61.5 63.6 87.4 81.1 
06 93.6 82.5 73.4 75.0 98.5 94.8 
07 98.9 88.6 82.6 83.3 111.5 103.4 
08 95.5 83.6 80.9 77.2 106.0 99.7 
09 76.6 69.3 66.3 66.2 80.6 75.5 
10 67.9 61.5 63.2 58.4 64.2 60.5 
11 77.4 69.6 72.0 67.7 75.6 71.7 
12 93.5 84.3 86.5 80.6 90.8 90.4 

Year 961.7 860.4 855.5 820.8 986.3 934.1 

3 Results and discussion 

According to the main task, complete monthly precipitation time series representing six 
smaller river basins located in the Ore Mountains were produced, considering both Czech 
and German rain gauges. The series cover the period 1961–2012, but it does not mean that 
the analyses could not be conducted also for more recent years. The original rain-gauge data 
do exist for the years 2013–2016 (see e.g. http://www.dwd.de/). Not all the aspects of the 
time series can be presented here. Rather, the resulting data were summarized in the form of 
long-term annual precipitation as the grid layers added to the other geographical features in 
Fig. 2. Also, long-term monthly precipitation totals for all the six basins are presented in 
Table 2. The final data are prepared for further analyses. 
 From Fig. 2, it can be seen that the pattern of the long-term annual precipitation 
somewhat mimic the distribution of elevation. It is caused by the method of universal kriging 
itself where the dependence of precipitation on elevation, besides coordinates, was the main 
source of information when building the models. Moreover, some extremes can be observed 
in Fig. 2. Whereas the western part looks more realistic, the eastern part includes questionable 
values (cf. [26]). It may be caused by the fact that there are some places without any rain 
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gauges at all. The resulting grid for the eastern part of the Ore Mountains can then reflect 
some overestimation of precipitation totals by the geostatistical model utilized. Nevertheless, 
it is believed that regarding the investigated river basins, the estimated totals are reliable as 
shown in Table 2. 
 Table 2 reveals interesting features of the precipitation distribution in the Ore Mountains. 
It seems that the eastern part is more humid that the western part, which may be supported 
by the less annual precipitation over the catchment 209100 (also located higher) compared 
to the situation in the east. Among other aspects, one may notice that the summer months are 
dominating. However, one exception occurs. It is the catchment 209100 where the winter 
precipitation is higher from a long-term perspective. 
 Regarding their quality, all the new series revealed homogeneity according to the 
Canadian R tool. This feature of the series signify that the next analyses will be valuable also 
concerning the assessment of the possible anthropogenic influences on discharge. 
 Last but not least, it is important to note that the selection of the monthly time step 
actually allowed this type of analysis. Choosing a finer step such as daily, would cause 
several problems. For instance, the spatial dependence of precipitation totals at different rain 
gauges would vanish, especially for summer months when predominantly convective 
rainstorms occur. During these situations, only small areas are usually hit and the kriging 
methods combined with the regression based on the elevation are no longer recommended 
(see e.g. [7, 27]). 

4 Conclusion and recommendations  
For the purposes of future analyses dealing with possible climate change effects in the Ore 
Mountains on their water resources, six smaller river basins were selected that are believed 
to be anthropogenically uninfluenced (or at least very slightly influenced). Because the future 
analyses are planned so that the precipitation totals should be compared with discharge, it 
was necessary first to pay attention to the issue of the spatial interpolation of data recorded 
at various rain gauges that existed or still exist in the area of interest (both in Czech and 
German territories). The method of universal kriging was chosen that incorporated the 
dependence of monthly precipitation on elevation, longitude and latitude. The monthly time 
step was selected because of the good accessibility of such data. Free-of-charge geostatistical 
tools available online in the form of different packages for the R statistical software were 
utilized. Finally, the monthly precipitation series representing all the six basins were 
produced that span from January 1961 to December 2012. Furthermore, all the new series 
were tested for their homogeneity, and it may be concluded that the series are homogeneous, 
which undoubtedly signify a good start of the next analyses. 
 On the other hand, some important features of the new series were not studied, but it is 
highly recommended to do so before their definite use. For instance, the utilized geostatistical 
technique was not compared to any of its deterministic counterparts. The validation of the 
results was not performed either. This may be done via a cross-validation approach or through 
a hydrological model as described in [7]. 
 
The author would like to thank Hana Kourková and Pavel Kukla from the CHMI’s Surface 
Water Department. They substantially helped the author when looking for the suitable river 
basins in the Ore Mountains. Petr Štěpánek’s help with gathering the technical precipitation 
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