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Abstract. Mixed convection in a three-dimensional ventilated cavity 
discretely heated has been analyzed numerically by the finite volume 
method. The results are presented in terms of streamlines, temperature 
distribution and average Nusselt number; for different combinations of 
thermal controlling parameters namely, Reynolds and Richardson 
numbers. The computational results indicate that the heat transfer’s rate is 
strongly affected by the mentioned parameters.  

1 Introduction  
The study of the heat surplus evacuation problems has been the subject of extensive 
research for many years, due to their importance in electronic equipments, air-cooling 
process and design. The obtained results showed that mixed convection is the most simple 
and low-cost mode of cooling operation. In addition, this phenomenon is also involved in 
many engineering applications such as the thermal design of buildings, furnace design, air 
conditioning, nuclear reactors and others… This practical interest explains the existence of 
various studies such as the numerical approach of Papanicolaou & Jaluria [1, 2] who 
studied  the mixed convection in a ventilated rectangular cavity provided with a localized 
heat source. Their principal results showed that the average Nusselt number increases by 
increasing the solid wall thermal conductivity. The cooling rate was also found to be higher 
when the outlet flow opening was located near the bottom of the vertical wall. Hsu et al. [3] 
conducted a numerical study of the mixed convective flow inside an enclosure with a 
partially dividing partition. They concluded that the maximum heat transfer rate dissipated 
from the source is obtained when the outflow opening is located at the lower part of the 
vertical wall, and a better cooling system was designed by placing the heat source as close 
as possible from the cold stream inlet opening. Rahman et al. [4]  investigated numerically 
the effects of Reynolds and Prandtl numbers on mixed convective flow and heat transfer 
characteristics in a ventilated cavity in presence of a heat-generating solid circular obstacle 
placed at the center. They indicated that the average Nusselt number at the heated surface 
for different values of Ri can be increased with the increasing of the Reynold and Prandtl 
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numbers. On the other hand, Moraga & López [5] compared numerically the mixed 
convection in a two- and three-dimensional air-cooled cavity They found that a 3-D model 
must be used to capture the fluid mechanics for Ri = 10 when 10 ≤ Re ≤ 250, and to 
calculate the global Nusselt number when Re = 500 for Ri < 1. 

Hence, the literature review shows that the majority of the previous works consider the 
case of two-dimensional model, while very few studies have been conducted for 3D 
numerical simulation. Therefore the three-dimensional approach gives a better modelization 
of the fluid flow and heat transfer within the cavity. This explains the choice of our present 
physical model which intended to investigate numerically the effects of conjugated 
Richardson and Reynolds numbers on the thermal transport and fluid flow phenomena in 
the considered cubical enclosure. 

2 Problem formulation 
The considered geometry is presented in Figure 1. It consists of a three-dimensional 
ventilated cavity with two heating square portions, similar to the integrated electronic 
components, are located on the vertical wall, while the rest of the considered wall is 
adiabatic. The opposite vertical wall is maintained at a cold uniform temperature, while the 
other four walls are adiabatic. An external air -flow enters the enclosure through 
rectangular cross section at the top of the left wall and exits from a channel, with the same 
cross section, placed at the bottom of the right vertical wall to extend the cavity and make 
possible the use of developed boundary conditions at the outlet for the fluid flow and heat 
transfer. In fact, many tests has been done in order to check the influence of the channel 
length on the outlet boundary conditions. Finally, a length of L has been adopted as it gives 
a good compromise between the results accuracy and the computational time. 

The cooling flow is air having a Prandtl number Pr of 0.71 and is assumed to be laminar 
and incompressible. Viscous dissipation is negligibly small and all other fluid properties are 
assumed constant except the fluid density giving rise to the buoyancy forces (Boussinesq 
approximation).Under the above assumptions, the Governing equations of heat transfer and 
fluid flow can be expressed in  three-dimensional dimensionless form as follows: 

 

Fig. 1. Physical model and coordinate system. 
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The non-dimensional variables are defined as follows: 
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Where p0 and ρ0 are respectively the reference pressure and density. Th is the 

temperature at the heated surface, Tc the temperature at the cooled surface, p is the pressure 
and (U, V, W) are the velocity components. 

In the above equations, the parameters Pr, Gr and Re denote the Prandtl number, 
Grashof number and the Reynold number, respectively. These parameters are defined as: 

3
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Where β, ν and α are the thermal expansion coefficient, the kinematic viscosity and the 
thermal diffusivity, respectively. 

The boundary conditions, associated to the problem are: 
 U = V = W = 0 on the rigid walls of the enclosure; 
 cU = 1,V =W = 0, = 0 at the inlet; 

 hθ = 1  on the left vertical heated sections; θ = 0 
n



 elsewhere on the wall 

 cθ = 0on the right vertical coold wall; 

 θ = 0 
n



on other vertical and horizontal walls and the right and left sections near 

the opening (“n” is the normal direction to the considered wall); 
 U = 0 , = 0 , V = W = 0 

X X
 
 

at the outlet.  

The local Nusselt number and the average Nusselt characterizing the heat transfer at the 
heated walls are respectively defined by:  

 

local

θ
Nu (Y, Z) =

X
      at    X = 0  


 

 
(9) 
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3 Numerical method 
The incompressible Navier-Stokes and energy equations are discretized by the finite 
volume method developed by Patankar [6] adopting the power law scheme for the 
convective terms. The SIMPLEC algorithm is used to couple momentum and continuity 
equations. The discretized equations are iteratively solved using an Alternating Direction 
Implicit (ADI) scheme. The system of algebraic equations is solved iteratively by means of 
the Thomas algorithm. Convergence of the numerical code is established according to the 
following criterion: 

n+1 nimax, jmax,kmax
i, j,k i, j,k -4

n
i, j,k=1 i, j,k

-
10

 



  

          
(11) 

Where   represents a dependent variable U, V, W, T, and P, the indices i, j, and k indicate 
the grid positions, n represents the iteration number. 

The present computational code, used to solve the governing equations, was validated 
after a comparison between our results and those presented by Moraga & López [5] in 
terms of temperature distribution and velocity profiles presented in Fig 2a and Fig 2b 
respectively. Hence, a good agreement was found with the Three-dimensional results of 
Moraga & López [5]. Uniform grid sensitivity tests were also conducted for different sets of 
the governing parameters and showed that the grid size 91 × 71 × 71 was the most 
appropriate for the present study. 
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Fig. 2a. Comparison between the isotherm obtained at the middle plane Z = 0.5 and those of  Moraga 
and López [5]. 
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Fig. 2b. U velocity component at X = 0.75, Z = 0.5 and b).V velocity component at Y = 0.5, Z = 0.5 

 

4 Results and discussion 
The aim of this paper is to study the effects of the Richardson and Reynolds numbers on the 
thermal transport and fluid flow phenomena in the cavity. The numerical computations are 
conducted for a wide range of Richardson number 0 ≤ Ri ≤ 10, Reynolds number  
50 ≤ Re ≤ 100, which correspond to a laminar regime. The relative height of the opening  
B = h/L, the Prandtl number, the relatives height of the heated portions ε = D/L and their 
width ε/2 are maintained respectively at constant values: 1/8, 0.71, 0.3 and 0.15.  

4.1 Characteristics of the flow and the thermal fields  

In order to give a global overview of the cavity, 3D streamlines and isotherms are 
respectively shown in figures 3a and 3b, for Re = 50 and Ri = 1. It is seen that the fluid 
flow consists of a clockwise rotating cell which appear inside the cavity under the open 
lines of the forced flow. These last ones are directed to the outlet. The interaction between 
the incoming jet flow and the heated portions leads to important changes in the temperature 
distribution through the cavity toward the cooled wall as seen in the corresponding 
isotherm. 
 

 
 
Fig. 3. 3-D streamlines (a) and isotherm (b) for Re = 50 and Ri = 1. 
 

The effects of the Reynolds and Richardson numbers on the flow structure at the plane 
Z = 0.5 and temperature distribution are shown in Fig. 4a–b. In fact, a previous analysis of 
the isotherms and streamlines in different plans (0 ≤ Z ≤ 1) shows a perfect symmetry with 
respect to the plane Z = 0.5. This is due to the geometrical symmetry and adopted thermal 
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boundary conditions. Hence, the planes Z = 0.5 , X=0.025 and Y=0.5 were chosen for the 
following presentations. Indeed, these plans are characterized by higher activity and 
presented adequately the dynamical and thermal fields within the cavity. 

The results show the existence of three kinds of heat transfer regimes, which depends on 
the buoyancy parameter Ri values. The first structure is shown in Fig. 4 for Ri = 0 and low 
Reynolds numbers (Re = 50). In this case, the inflow is not strong enough, the open lines 
pattern conserves the same form and occupy almost the whole cavity until the outlet.  
A small vortex is located beneath the open lines of the forced flow. Furthermore, the size of 
the vortex increases by increasing Re to 100. Due to this increased inertia force, the 
corresponding isotherms are stratified over the two heating sections due to the imposed 
boundary conditions while the lower isotherms are uniform and parallel to each other in the 
remaining parts of the cavity which signify a dominant conduction heat transfer. 

At higher Re values, Re = 200, the flow structure become intense and the intensity of 
the forced flow the open lines and the vortex size increases. Moreover, a secondary counter 
clockwise vortex appears in the upper corner of the cavity. The examination of the isotherm 
lines shows an improvement in the exchange at the cold wall of the cavity. 

The higher temperature regions are concentrated near the heated portions while the 
thermal gradient increases and are submitted to a slight deflection. Indeed, pointing out that 
vigorous actions of inertia forces are the main role of the flow transport. 

 
Fig. 4. Streamlines (a) and isotherms (b) at the mid-plane XY (Z = 0.5), isotherms (c) at the plane YZ 
(X = 0.025) and  isotherms at the mid-plane XZ (Y = 0.5) for Ri = 0 and different values of Re. 
 

The second structure is shown in Fig. 5 in terms of  dynamical and thermal fields for  
Ri = 1 and different Re. The  behaviour of convective heat transfer is the same as discussed 
previously in Fig 3 on 3D-model, in the case of low Reynolds number. However, the 
circulation in the flow becomes larger and the size of the vortex increases by increasing 
Reynolds number. The corresponding isotherms are more tightened at the vicinity of the 
heated portions and the gradient temperature becomes larger due to thermal interaction 
between the heated portions and the incoming cold flow which ensure well the installation 
of mixed convection. 
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At higher value of Richardson number (Ri = 10), the role of the free convection in the 
cavity becomes more significant (Fig. 6) and consequently the increase of all considered 
Reynolds numbers is accompanied by a reduction of the convective cell. This can be 
attributed to the dominance of thermal buoyancy effect where the boundary layers become  

 
Fig. 5. Streamlines (a) and isotherms (b) at the mid-plane XY (Z = 0.5), isotherms (c) at the plane YZ 
(X = 0.025 ) and  isotherms at the mid-plane XZ (Y = 0.5) for Ri = 1 and different values of Re. 
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Fig. 6. Streamlines (a) and isotherms (b) at the mid-plane XY (Z = 0.5), isotherms (c) at the plane YZ 
(X = 0.025 ) and isotherms at the mid-plane XZ (Y = 0.5) for Ri = 10 and different values of Re. 

4.2 Heat transfer enhancement 

 
Fig. 7. Variation of the total average Nusselt number with Ri for different Re. 

 
In order to analyze the thermal performance in our configuration, we illustrate in Fig. 7, 

the total average Nusselt number evaluated on the two heating sections versus Ri, for 
different value of Re. As expected, the total average Nusselt number increases with the 
Richardson number. This can be explained by the fact that the buoyancy effects are the 
dominant mode of mixed convection transport. In contrast, for a given number Ri, the 
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In order to analyze the thermal performance in our configuration, we illustrate in Fig. 7, 

the total average Nusselt number evaluated on the two heating sections versus Ri, for 
different value of Re. As expected, the total average Nusselt number increases with the 
Richardson number. This can be explained by the fact that the buoyancy effects are the 
dominant mode of mixed convection transport. In contrast, for a given number Ri, the 

Nusselt number decreases by increasing Re. This is due to the acceleration of the cold 
forced flow through the cavity along the cold wall which does not mix well with the 
internal heated air.  

5 Conclusion  
A numerical study has been carried out in the case of laminar three-dimensional mixed 
convection discretely heated from the side. The results show that the controlling parameters 
Re and Ri leads to important modifications of dynamical and thermal structures. The 
increase of the Richardson numbers enhances significantly the heat transfer. however, the 
forced flow support the heat transfer for low Reynolds numbers and plays an opposing role 
for the high values of Re. 
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