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Abstract. Performance monitoring is an important aspect of operating 
wind farms. This can be done through the power curve monitoring (PCM) 
of wind turbines (WT). In the past years, important work has been 
conducted on PCM. Various methodologies have been proposed, each one 
with interesting results. However, it is difficult to compare these methods 
because they have been developed using their respective data sets. The 
objective of this actual work is to compare some of the proposed PCM 
methods using common data sets. The metric used to compare the PCM 
methods is the time needed to detect a change in the power curve. Two 
power curve models will be covered to establish the effect the model type 
has on the monitoring outcomes. Each model was tested with two control 
charts. Other methodologies and metrics proposed in the literature for 
power curve monitoring such as areas under the power curve and the use of 
statistical copulas have also been covered. Results demonstrate that model-
based PCM methods are more reliable at the detecting a performance 
change than other methodologies and that the effectiveness of the control 
chart depends on the types of shift observed.   

1 Introduction 
The reliability and availability of Wind Turbines (WT) are two key aspects used to improve 
and insure the development and integration of wind energy in current grids. The 
development of robust monitoring is a way of contributing to this objective. Interesting 
works have been published lately on various monitoring condition techniques for WT [1, 
2]. Among the monitoring methods, some authors proposed approaches to monitor the 
production of a WT using Power Curve Monitoring (PCM) [4–9].   

The power curve of a WT is the relationship between the wind speed and the power 
output. It is also viewed as the performance of the WT. Therefore, any performance 
degradation will be reflected in the power curve: less power will be produced for a given 
wind speed. In the past years, various methods for PCM have been developed, and each one 
of them reported interesting results. Nowadays, these methods are receiving more attention 
from wind farm operators as their WT are starting to age. It is now common to encounter 
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wind farms that have been in operation for more than ten years. As a wind farm ages the 
performance of its WT degrades with time as reported in [3].  

However, these PCM methods were developed using data from different industrial wind 
farms.  Therefore, it is not possible to clearly establish the potential of each PCM method. 
The objective of the current work is to compare some PCM with a common dataset. Two 
case studies from industrial WTs will serve as the basis for comparison.  

Four different PCM methodologies will be compared. The first one from [4] uses data 
mining methods for the power curve model together with a Shewhart control chart for the 
monitoring. This approach will be in direct comparison with the one proposed by [5] which 
is based on the binning method defined in the IEC 64100-12-1 standard. For this second 
PCM method, an Exponentially Weighted Moving Average (EWMA) control chart is use to 
establish if the power curve sustained a change. These firsts two PCM can be classified as 
model-based monitoring methods since they rely on difference between the observed and 
the predicted behavior to determine the presence of any anomaly. Two other PCM 
approaches discussed are the use of the Performance Index (PI) proposed by [6] and the 
monitoring of power curve copulas developed by [7]. 

2 Data Source 

2.1 Power Curve of a Wind Turbine 

The power curve of a WT is the relationship between the wind speed and the output power. 
It is also a function of the WT operating modes. Figure 1 from previous work presents the 
power curve of a WT and illustrates the four zones corresponding to the operating modes 
[5]. Zone I is where the wind speed is lower than the cut-in speed. In this region, the power 
of the WT is null, since there is not enough power in the wind to move the rotor. Between 
the cut-in speed and the rated speed, the power of the WT is a function of the cubic wind 
speed. The rated speed is where the power reaches its nominal value. In Zone III, which is 
between the rated speed and the cut-out speed, the power of the WT is maintained to  
a constant value corresponding to the nominal power by varying the blade pitch angle. For 
a wind speed greater than the cut-out speed (Zone IV), the WT is shut down to protect its 
structure and components from extreme loads.  

Since in Zone III the WT power is imposed, performance degradation will not be 
noticeable. So as recommended by [8] and done in [5], values with wind speed greater than 
the rated wind speed will be removed from the dataset.   

 

Fig. 1. Power Curve and operating modes of a WT. From [5]. 
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2.2 Case Studies 

The PCM methodologies will be compared using data from an industrial wind farm located 
in Canada. The WTs are MW class and pitch regulated. This wind farm has been in service 
since 2005 and data is archived at frequency of 1 Hz. However, as suggested by the IEC 
standard, 10-minute averages are use rather than the high frequency data to reduce the noise 
and the effect of autocorrelation. Data have been filtered for outliers caused by events such 
as sensor malfunctions, database unavailability or malfunction and icing with the method 
proposed in [9]. The timestamp of the date is the beginning of the time period.  

 Two cases of WT performance degradation will provide the common reference for the 
comparison of the PCM methods. The first case is an example of an erroneous activation of 
a curtailment algorithm of a WT resulting in a sudden underperformance of the WT. The 
second case presents a small and progressive performance degradation caused by blade 
leading edge erosion.  

The nacelle wind speed will be use because met masts are not available for these two 
WTs. This wind speed will also be corrected for the effect of air density has suggested by 
the IEC standard (all further mention of wind speed take account of the air density 
correction).  

3 Power Curve Monitoring Methodologies 

Each PCM method will be briefly introduced. References to the original work are included 
for more details on each one of them. All PCM methods will be compared on their ability to 
detect a small change in the power performance and on the time needed for the detection of 
the behaviour change presented by the two different case studies. The first case is a sudden 
shift corresponding caused by a control algorithm change. For the second case, which is 
about a progressive degradation, it is not possible to clearly define when the issue started. 
Therefore, the date of detection will be use as a PCM performance metric.    

3.1 Model-Based Monitoring 

In model-based monitoring, the energy output coming from the WT is predicted with  
a model. Then, the residuals (differences between the prediction and the observation) are 
analysed. For a valid model, and without any on-going under-performance, the residuals 
should be ergodic (same statistical behaviour in time). However, a change of energy output 
coming from the WT will result in a significant change or trend in the residuals. Thus, the 
power residuals will be monitored for any occurrence of under-performance. Two different 
models will be compared, the bins method and the random forest. 

3.1.1 Bins Model 

The bins model consists of splitting wind speed data by an interval of 0.5 m.s-1. The power 
curve is obtained by taking the average of the power in each bin. This model is widespread 
in the industry since it is recommended by the IEC standard. This model is used in [7].  

The power residuals are normalized using the average and the standard deviation of the 
power in the respective bin, allowing treating all the bins simultaneously rather than bin by 
bin. For more on this transformation, the reader should consult [7].   
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3.1.2 Random Forest 

In [4], a model using a random forest is use to predict the WT power. Random Forest is  
a non-parametric data mining methods constructed by an ensemble of randomly generated 
regression trees that can be used for prediction. See [10] for more on random forest. The 
random forest used for the prediction of the power will have the wind speed and the air 
density as inputs factors. The power residuals  𝑅𝑅(𝑡𝑡) in this case are transformed to 
normalized residuals: 

𝑅𝑅(𝑡𝑡) = 𝑃𝑃(𝑡𝑡)−𝑃̂𝑃(𝑡𝑡)
𝑃𝑃(𝑡𝑡) = ∆𝑃𝑃(𝑡𝑡)

𝑃𝑃(𝑡𝑡)              (1)  

where  𝑃𝑃(𝑡𝑡) is the observed power and 𝑃̂𝑃(𝑡𝑡) the expected power.  

3.1.3 Control Charts 

Control chart are use in Statistical Process Control (SPC). They act in a way like  
a continuous statistical testing. A statistical property of the process is plotted trough time 
(individuals, sample average, range, sample standard deviation, etc.) If the data of the 
control chart is outside of the control limits, the process is reported as statistically different. 
A 𝑋̅𝑋 Shewhart chart is use in [4] and a EWMA chart is use in [5]. The process monitored 
here is the power residuals. The residuals are averaged on a three-day period to reduce the 
effect of noise as discussed in [5]. The EWMA chart smoothes the residuals, acting as  
a high frequency filter. The smoothing parameter (𝜆𝜆) is adjustable and takes values between 
0 and 1. If 𝜆𝜆 = 0 the smoothing is at its highest possible point and if 𝜆𝜆 = 1, there is no 
smoothing. A complete definition of control charts is included in [11]. Here, as 
recommended in [5], 𝜆𝜆 = 0.2 will be use. 

3.2 Copulas Monitoring 

Copulas are coming from probability theory and statistics. They are a multivariate 
probability distribution for which the marginal probability distribution of each variable is 
uniform. According to Sklar’s theorem, any joint distribution can be transformed to  
a copula with uniform marginal distribution. The copula is an illustration of the dependence 
structure between the variables [7].  

Copulas have been use for PCM by [7]. The power curve can be considered as  
a multivariate probability distribution function of the wind speed (𝑣𝑣) and the power (𝑃𝑃). It 
is therefore possible to transform this multivariate distribution to a copula by transforming 
the random variables 𝑣𝑣 and 𝑃𝑃 into two new random variables with uniform marginal 
distribution 𝑢𝑢~𝑈𝑈[0,1] and 𝑤𝑤~𝑈𝑈[0,1]. Figure 2 presents the multivariate distribution of the 
wind speed and power and its transformation to a copula. Since the copula represents the 
dependence structure between the wind speed and the power, any change in the WT 
performance will be reflected in the copula. As shown in Figure 2, the copula of a power 
curve has a linear aspect. A reference copula is first constructed, and this transformation 
from the original probability distribution to the new probability distribution is use 
afterwards with date from the test periods. Therefore, a change on the energy output 
coming will be easily detected in the copula. The advantage of the use of copula in PCM is 
that no model is required, hence limiting the uncertainty inherent in the use of a model.   

The residuals between the baseline period copula and the copula of the period under 
evaluation (𝑅̃𝑅) is used as the metric to determine if there is a change in the WT behaviour. 
The suggested threshold for the determination of a behaviour change of are |𝑅̃𝑅| > 0.02. 
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Fig. 2. On the left: Kernel density estimate of the joint probability of wind speed and power output 
with the colour in function of the probability (blue for 0, red for 1). On the right: Copula of a Power 
Curve along with the uniform marginal distribution of the random variable 𝑢𝑢 and 𝑤𝑤.  

3.3 Performance Index 

The Performance Index (𝑃𝑃𝑃𝑃) for the performance assessment of a WT was proposed for the 
performance assessment of a WT in [6]. The power curve is separated in 𝑛𝑛 different wind 
speed regions. In their original work, the authors proposed two different regions (below and 
above the nominal wind speed). Its calculation is based on the area under the power curve is 
the following way: 

𝑃𝑃𝐼𝐼𝑖𝑖 = 𝑆𝑆𝑖𝑖
𝑇𝑇−𝑆𝑆𝑖𝑖

𝑅𝑅

𝑆𝑆𝑖𝑖
𝑅𝑅                (2) 

 
where 𝑃𝑃𝐼𝐼𝑖𝑖  is the performance index in the region 𝑖𝑖, 𝑆𝑆𝑖𝑖

𝑅𝑅 is the area under the power curve 
in the region 𝑖𝑖 during the reference period and 𝑆𝑆𝑖𝑖

𝑇𝑇 is the area under the curve for the period 
under evaluation. The final 𝑃𝑃𝑃𝑃 is obtained with a weighted sum of all the 𝑃𝑃𝐼𝐼𝑖𝑖 with the 
weight corresponding to the wind distribution. The calculation is the following: 

 
𝑃𝑃𝑃𝑃 = ∑ 𝑊𝑊𝐷𝐷𝑖𝑖 ∙ 𝑃𝑃𝐼𝐼𝑖𝑖

𝑛𝑛
𝑖𝑖=1               (3) 

 
where 𝑊𝑊𝐷𝐷𝑖𝑖  is the percentage of wind distribution in the region 𝑖𝑖 for the period under 

evaluation. The use of the 𝑃𝑃𝑃𝑃 for PCM implies the use of a power curve model. In the 
original work, a linear hinge model was used. However, the effect of a different model on 
the PCM will be covered by the comparison between the bin model and the random forest. 
Also, to isolate the results of the 𝑃𝑃𝑃𝑃 as a metric for PCM, the 𝑃𝑃𝑃𝑃 will be used with the bin 
model. As in [6], the PI will be calculated monthly. 

 

Marginal distribution of u 

Marginal 
distribution of w 
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4 Results 

4.1 Model-Based Monitoring 

4.1.2 Shewhart Control Chart 

Figure 3 reports the results of the two model-based PCM when used with a 𝑋̅𝑋 Shewhart 
chart. The normalized residuals for the bins method are expressed by ‖𝑅𝑅‖. For case study 
A, both power curve model-based PCM could easily detect the shift in the power curve; by 
2012-05-08 for the random forest and by 2012-04-15 for the bin model. However, neither 
of the two model-based PCM methods can detect the performance degradation in Case B, 
which is therefore not presented. Also, both methods return a false positive around  
2010-02-14.   

 

Fig. 3. Power Curve Monitoring with the 𝑋̅𝑋 Shewhart chart for both models. 

4.1.2 EWMA Control Chart 

 
Fig. 4. Power Curve Monitoring with the EWMA chart for both models. 
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Fig. 4. Power Curve Monitoring with the EWMA chart for both models. 

Figure 4 presents the results of the two model-based PCM when use this time with an 
EWMA chart. For Case A, both power curve models could detect easily the shift in the 
power curve; by 2012-05-02 for the random forest and by 2012-05-13 for the bins model. 
However, for the case study B, the PCM method based on the bins model performed better 
than the one based on the random forest. The bins + EWMA method found the change of 
behaviour on 2012-07-21 while the random forest + EWMA reported the change a month 
later, on 2012-08-22.  

The false positive in Case A is no longer observed, due to the smoothing effect of the 
EWMA. It was expected in Case A that the Shewhart chart performed better than the 
EWMA chart. The smoothing of the EWMA is known to enhance the detection of small 
shifts while reducing the reactiveness to sudden variations [11].  

4.2 Copula Monitoring 

The results of PCM with copula are presented in Figure5. This method could detect the 
shift in power curve in the dataset observed in Case A. The detection date is 2012-05-01. 
This result is like the one obtained with the use of the random forest with the EWMA and 
the bins method with the EWMA. The need for a full month of data to calculate the copula, 
since it requires a large sample, is a drawback for copula monitoring. However, the use of  
a rolling window of a month for the evaluation period with a daily calculation of the copula 
might be able to overcome this issue.  

  
Fig. 5. Power Curve Monitoring with Copula Monitoring. 

However, the copula method was not able to detect the change in the power curve for 
the case study B using the threshold provided in the original work (|𝑅̃𝑅| > 0.02). The choice 
of this threshold is based under the assumption that, in absence of any issue, the value of 
 𝑅̃𝑅 will remain close to 0. However, it can be seen on Figure 5 that the value of the copulas 
residuals 𝑅̃𝑅 is above 0 at the beginning of the reference period, pointing toward a systematic 
bias. We suggested that the thresholds should be defined with regard of the average copula 
residuals from a reference period of a year. Using these alternative thresholds, the copula 
PCM method would almost have could detect the under-performance by 2012-07-01. 

4.3 Performance Index 

The result of PCM with the PI is reported on Figure 6. It is difficult to identify if the  
PI detected the behaviour changes in the two case studies as it is unclear what threshold to 
use. For Case A, a change in the PI can be observed by 2012-04-01. However, it is not 
possible to tell if the PI has detected the change of behaviour in Case B.  

7

E3S Web of Conferences 22, 00024 (2017)	 DOI: 10.1051/e3sconf/20172200024
ASEE17



 
Fig. 6. Power Curve Monitoring with the Performance Index. 

5 Conclusion 

Four different PCM methods were compared using common set of data. The dataset 
consisted of two case studies from WT in industrial wind farms that suffered a performance 
change. The model-based PCM used with a EWMA control chart was the only approach 
able to detect both behaviour changes. However, model-based PCM along with the 
Shewhart chart and the copula PCM provided better results for case A. The smoothing 
effect of the EWMA chart is enhancing the ability to detect small shifts while reducing the 
reactiveness to sudden important shifts. Here, both models studied presented similar results. 
A combination of both control charts could be an interesting SCADA monitoring strategy.  

Not all PCM methodologies present in the literature have been covered in this work and 
new PCM approaches are still interesting as results may be improved. Further work on the 
benchmarking of other PCM methods would be a logical follow-up to the current work.   
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