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Abstract. Statistical models of the seismoacoustic and electromagnetic activity caused
by deformation disturbances are considered on the basis of compound Poisson process
and its fractional generalizations. Wave representations of these processes are used too.
It is discussed five regimes of deformation activity and their role in understanding of the
earthquakes precursors nature.

1 Introduction

Modeling of various regimes of seismoacoustic and electromagnetic emission caused by deformation
disturbances, especially in the phase of their activity, is actual for understanding of earthquakes pre-
cursors nature. The changes in the regimes of the deformation process are of interest: unexpected
decreases and increases in their activity, the duration of fading, and the discharging energy of accu-
mulated stresses. All these features are detected in signals of seismoacoustic and electromagnetic
emission, which are used for diagnostics of the deformation process.

The work of external forces supports a critical level of elastic stresses, as a result there are con-
stantly growing plastic deformations. This process is characterized by the velosity of random dislo-
cation changes, which are determined by the parameters L and u of the dislocation tensor - the spatial
scale and the discontinuity of displacement vector (the Burger’s vector). We suppose other parameters
of the tensor are unchanged, but it is not difficult to take into account the full tensor description.

Note that with using the theory of dislocation changes, it is possible to consider discontinuities,
moving along existing faults, repacking of grains or blocks, filtration of liquid in a porous medium,
etc. in a wide range of scales L (up to 15 orders).

2 Fractional model

If the relative elastic deformations ε are constant, then we can take the following u/L = ε. In this case

there is can considered random dislocation changes as a one parameter process LV,T (t) =
N∑

k=0
L(xk, tk),

where the sum is taken over the all dislocations with coordinates xk, tk in a given volume V and time
interval T .
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Random variables are xk, tk and L(xk, tk). In the first approximation, they can be considered inde-

pendent, then the process LV,T (t) =
N∑

k=0
L(xk, tk) is a compound Poisson process with the distribution

of independent increments p(L). For N → ∞, we’ll have a stable distribution p(LV, T , t) [8] with an
increasing average that characterizes the process of plastic deformations in the volume V .

If the distribution of independent increments p(L) is stable, then the distribution p(LV,T , t) will be
stable at each step N with time growing parameters. This process is generalization of the Gaussian
process and is the key to understanding of the universality and wide prevalence in nature of stable
distributions having the power law properties. The Gutenberg-Richter law can also be approximated
by these distributions on the assumption that dislocation changes are independent.

Independence of random variables xk, tk and L(xk, tk) is violated in dislocation clusters, in which
the dislocation density is so large that their radii of influence Rin f and Tin f depending on L(xk, tk) are
overlap [1, 2]. About modeling of zones of influence see [3, 4]. The difference between sparse and
dense packing of dislocations in clusters may be distinguished.

Using the seismic process as an example we can considered the sequences of foreshocks and
aftershocks as a sparse packing and the mainshock (fault) as a close packing of dislocations. The
events cluster is a plastic deformation disturbance with a time growing packing of events. Obviously,
that the dependence and connectedness of the events is increased with their density. The sequence of
foreshocks can be considered as a phase of consolidation of certain scaled level events, which leads
to the mainshock - event of more higher scaled level. A sequence of aftershocks can be regarded as
the branching phase of the mainshock.

Such representation of the plastic deformation disturbance gives us the opportunity to see the
interaction of scale levels. In the space time representation, the cluster of events is developed as
a process of random walks that it is possible to compare with a fractional diffusion process [1, 2],
in general, non-Markovian, nonlocal and with memory. It means that in the sequence of events all
random variables L(xk, tk) and xk, tk are dependent. Possible simplifications will be discussed below.

Influence radii Rin f and Tin f increase with L(xk, tk) and become larger than the size of the
area (V, T ), this leads to that the large events always form a cluster in the considerational area [1, 2],
so there are constraints to use the Poisson process for modelling large events.

For small events, there is an accumulating effect. Over time, the density of small dislocations
increase, they consolidate and cause an event of more larger scale (mainshock), after which, as a rule,
a backward wave arises down along a cascade of scales in the form of a branching process. With such
cascade effects, events of different scales can not be considered independent.

Thus, we have the constraints on the use of the Poisson process as a model of dislocational de-
formations, both for large and small events. Nevertheless, for any of the chosen scales, assuming
their equality, we can use the Poisson process as a first approximation or a background regime. Such
events are referred as migrants for area (V, T ) [5]. And it is necessary to consider deviations from the
background regime to take into account more subtle effects.

Deviation from the background regime can occur in the hardening or relieving (weakening)
medium (changes in rheology). When the medium is hardening there is arose the area in which the
process of plastic deformation slows down and the flow of events decreases. Thus, for example, there
is an area of seismic quiescence or gap (Fedotov), in which deformation heterogeneity is formed. The
elastic energy accumulated in it is released when the stresses are discharged.

It is clear that such accumulation of energy can not be described by the Poisson process with a
flow of independent events, because there is a high degree of localization of events that did not release
in a seismic quiescence, but they will be realized in deformation disturbance. They can be regarded as
adjourned events. Deficiency of events leads to an increase in elastic stresses, as a result the strength-
ening of the medium is overcome and the accumulated additional elastic energy is released. When
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the medium is hardening the sequential changes in the regimes of the plastic deformation process take
place: normal (background) pulsations and their deceleration (fading), then activation (discharge) and
again the background regim. This sequence of changes is called intermittency. When the medium is
weaken, the terms "deceleration" and "activation" should be replaced one to another.

The arising deformation disturbance (in activation) can be considered as an event of a higher scale
in relation to those events that did not take place during a quiescence caused by the local hardening of
the medium. The energy of the deformation disturbance must correspond to the sum of the energies
of the adjourned events.

Local hardening of the medium and the preparation of the deformation disturbance on one of the
spatial scales L can be described with the fractional Poisson process, for which the average number
of events in the time interval t is given by the expression

nν(t) =
(µt)ν

Γ(1 + ν)
, (1)

where µ is the flow of events with the scale L without hardening of the medium, Γ(1 + ν) – gamma-
function, 0 < ν ≤ 1 [6, 7]. For ν = 1 we have the Poisson process with independent events.

The inverse 1/ν of the fractal parameter ν can be considered as a hardening parameter of the
medium. Indeed, with its increasing (decreasing of parameter ν), the event flow of nν(t) slows down
when µt > 1, and the events deficit

nν(t) − n1(t) (2)

causes an increase in stresses. And the time of accumulation of adjourned events until the moment
when hardening of the medium is overcome will determine the energy of the deformation disturbance.

It is noteworthy that the parameter ν is responsible for the fractal dimension of the distribution of
events on the time interval [8]. Thus, hardening of the medium (its rheological property) changes the
fractality of the process (event statistics) that is realized as a delayed relaxation caused by memory
effects that have resulted from the hardening.

The slowing down of the fractional process is related to the behavior of probability to keep the
initial state of process [6, 7]

P0(t) = Eν(−(µt)ν), (3)

this is the survival probability of the initial state, where Eν(x) is the Mittag-Leffler function, the
fractal generalization of the exponential, 0 < ν ≤ 1. However, not a function Eν(x), but a complex
function Eν(−(µt)ν) is called a fractal exponential, it is the relaxation characteristic of the process.
The properties of its complexity, behind which there are two effects, will be discussed below.

For small values of the parameter ν, the relaxation of the initial state slows down, and the waiting
times increase. The fading of pulsations is caused by this. The redistribution of probability is given
by

∆P0(t) = Eν(−(µt)ν) − E1(−µt), (4)

where E1(−µt) = e−µt.
Deviation of P0(t) from the usual exponential indicates the presence of aftereffects and memory,

which are caused by the adjourned events. We’ll considered the difference between memory and
aftereffects in more detail.

When the hardening of the medium is overcome, the plastic deformation disturbance comes to
replace of seismic quiescence. Disturbance has three phases: foreshocks, mainshock and aftershocks.
In essence, these are the events that did not take place in seismic quiescence. The first and last phases
of the disturbance are represented by a sparse packing of events and the mainshock is represented
by dense one. Each event of the cluster affects on subsequent events, it is a aftereffect and at the
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same time, every event of the cluster is affected by previous events, it is a memory effect. The past
impacts on the future through the present [8]. As a result, there is formed a chain of events so joint
that the impacts of aftereffect and memory are difficult to separate, but below we will try to do it using
different approximations.

Any event from the sequences of foreshocks, mainshock and aftershocks can be decomposed
into the sum of background events with the scale of L. The total number of events with a scale L
in the plastic deformation disturbance should roughly respective to the number of adjourned events
during the quiescence of the process. Such representation of the deformation disturbance allows us
to estimate the disturbance energy and to establish a relation between the scales: foreshocks – the
wave of consolidation of events of the selected scale level L, the mainshock is the realization of the
disturbance at the highest scale level, and aftershocks – the wave of branching of the mainshock. There
are the waves up and down on the scales, and in the space time presentation, we have converging and
diverging waves to and from the center which is the mainshock.

Note that in the quiescence phase there is only a divergent wave from the adjourned events. This is
a slow diffusion process, while in the deformation disturbance, the process is faster by 3-4 orders. The
fast process is the wave in the mainshock and the fractioal diffusion in the foreshocks and aftershocks.

Thus, the evolution of the packing of events of the scale L and the interaction of scales occurs in
the deformation disturbance simultaneously as a result of consolidation and branching. Here we can
note the analogy with turbulence in which the integration and fragmentation of vortices take place, an
intermittency of regimes is observed. There is an analogy between the dislocation and vortex. We’ll
stay on their difference in spectra below.

The time form of the plastic deformation disturbance can be considered as a fractal analogue of the
Berlage pulse with a variable packing density of events of scale L and variable fractal dimension. For
the disturbance model, we’ll use various modifications of the fractal exponential P0(t) = Eν(−(µt)ν),
which was apllied to describe the phase of the quiescence.

For the probability of the mainshock emergence we’ll use the expression

Pt<t∗ (τ) = Eα(−(−µ̃τ)α). (5)

This is an increase (time reversal) fractal exponential, where τ is the time with the starting point from
the moment of the start of the mainshock t∗, τ = t − t∗, τ < 0, µ̃ – is the average flow of events in the
deformation disturbance, 0 < α ≤ 1. The probability of absence of the mainshock will be

P̃t<t∗ (τ) = 1 − Pt<t∗ (τ). (6)

Differentiating this expression, we’ll obtain the distribution of the increasing flow of foreshocks,
which can be considered as the inverse Omory law. This process will be the initial stage of the
fractal pulse of Berlage.

For the probability of the mainshock preserving, we’ll use the expression

Pt′<t(τ′) = Eβ(−(µ̃τ′)β). (7)

This is decreasing fractal exponential, where τ′ is the time with the starting point from the moment of
the end of the mainshock t′, τ′ = t − t′, τ′ > 0, the parameter µ̃ – is the average flow of events in the
deformation disturbance, 0 < β ≤ 1. The probability of the mainshock not preserving will be

P̃t′<t(τ′) = 1 − Pt′<t(τ′). (8)

Differentiating this expression, we’ll obtain the distribution of the decreasing flow of aftershocks, i.e.
the Omory law, that can be considered as the attenuation stage of the fractal Berlage pulse.
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Differentiating this expression, we’ll obtain the distribution of the decreasing flow of aftershocks, i.e.
the Omory law, that can be considered as the attenuation stage of the fractal Berlage pulse.

To sew together the two obtained fractal expressions, we’ll take into account that the flow of
events in the phase of mainshock is tightly packed and constant, and the intencity of fractal flows can
not exceed the tight packing. In the foreshock phase, the event package increase to the maximum
possible, in the mainshock it persists, and in the aftershocks it decreases. Fractal parameters α and
β are determined by the properties of the medium, its capacity to consolidate and to branch events.
The average flow of events µ̃ in the plastic deformation disturbance is determined by the phase of the
quiescence, which is characterized by the parameters µ, ν and the time of quiescence. The time scales
µ and µ̃ can differ by 3-4 orders, since the perturbation is short-lived.

The phase of the foreshocks in the disturbance is usually very fast. This is a short front of the
fractal Berlage pulse. So short in the compearison with the aftershocks phase that it can be neglected
in the first approximation and only aftershocks as the branching of the mainshock can be considered
(ETAS model) [5]. However, for the earthquakes forecasting, it’s just the foreshock phase and the
preceding quiescence stage are of interest. Using the length of quiescence time, it is possible to
estimate the energy of the stress discharge and the phase of the foreshocks predicts the rate of the
plastic deformation disturbance, that gives the time of the short-term forecast. In view of this, a new
theory is needed.

3 Comparison with the ETAS model

It remains to show that our result corresponds to the ETAS model, if we neglect the effects of memory.
For the probability of the initial state survivaling, the ETAS model gives [5]

P(τ) = e−ντ−b(ντ)1−θ
. (9)

Proceeding from the form of the exponential of this expression, we have two flows of events. The
first of them corresponds to a Poisson process with a constant flow, and the second – to a process with
a flow of events decreasing in time on power law. The second flow takes into account aftershocks
as branching of the events of the first one. Neglecting the weaker first flow and differentiating the
expression 1 − e−b(ντ)1−θ

for the transition probability from the initial state to any other, we obtain the
Weibull distribution for the aftershocks waiting times.

For the aftershock phase, our result gives expression

Pt′<t(τ′) = Eβ(−(µ̃τ′)β). (10)

Replacing in it the fractal exponential on expanded one

Pt′<t(τ′) � e−(µ̃τ′)β , (11)

we get the result of the ETAS model, which agrees well with seismic data [5], however, more subtle
effects are possible, which will be discussed below.

The differentiation of the expression

1 − Pt′<t(τ′) � 1 − e−(µ̃τ′)β , (12)

which is the probability of transition from the initial state to any other, gives, as in the ETAS model,
the Weibull distribution for the aftershocks waiting times. The values 0 < β < 1 correspond to a
decreasing flow of events (aftershocks), Omori’s law. The value β = 1 corresponds to a constant flow
of events – the Poisson process. In solid state physics parameter β is called the Weibull index.

From the comparison of the fractal approach with the ETAS model, we can conclude that the power
law argument (µt)ν of the fractal exponential Eν(−(µt)ν) is responsible for the branching processes
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(aftereffects that determine the fractal slowing of the flow), and the function Eν(x) itself describes the
effects of memory. Both (µt)ν and Eν(x) give the delayed relaxation.

There are no memory effects in the ETAS model, and replacing the expression Eν(x) → e−x

changes the relaxation essentially. Thus, the fractal approach takes into account the history of the
process and opens up more wider possibilities for describing the properties of the medium.

For example, to simulate the relaxation we can use a dependence P̃0(t) = Eν̃(−(µt)ν) with different
exponents of branching ν and memory ν̃. This approach corresponds to a fractional Poisson process
with a time varying on power law flow of events. Wherein the number of fractional characteristics of
the medium is doubled.

4 The physical significance of the exponent b = 3/2

We note that for foreshocks the power law argument of the fractal exponential is responsible for con-
solidation processes, but not the branching. The process of reverse diffusion (consolidation) has the
opposite direction in a nonequilibrium medium. In the fault, two processes with opposite directions in
the space of the scales are presented simultaneously. They interact in the system of opposing waves,
forming a fractal wave of destruction (a pair of kink and antikink), which interacts in a complex way
with the nonequilibrium medium, obtaining the energy of elastic deformations to produce fractures
and generate elastic and electromagnetic oscillations. The model of the complex of fractal wave pro-
cesses can be the subject of the following paper, but here we make only a few remarks.

In the coordinate system associated with the wave of fracture, the dislocation process can be repre-
sented as an oscillator. This is a well-known description of dislocation changes using the sine-Gordon
equation. Fractal properties of the process are introduced to describe the interaction of the fracture
wave with the medium. The period of the oscillations is determined by the time τL of formation of one
dislocation of scale L in the fault. And the number of oscillations nR is the ratio nR = τR/τL, where τR

is the time of formation of the discontinuity, the parameter nR plays the role of a topological quantum
number. Similar numbers can be introduced for foreshocks and aftershocks, ňR and n̂R. Naturally, the
sum of all the quantum numbers (the number of events of scale L in the cluster) must correspond to
the deficit of events in the period of quiescence:

S D = ňR + nR + n̂R, (13)

i.e. the quantum number of the deformation disturbance. This value, which is determined by the
properties of the medium, characterizes the energy of the plastic deformation disturbance and the
ratio of the scale levels.

The fractal structure of the deformation disturbance is opened by a wavelet transformation that is
an expansion in the terms of the basis impulse functions, the form of which is consistent with the form
of the disturbance under consideration. Such expansion was called the sparse approximation [9, 10],
for which Berlage pulses are used as the basis functions. It is obvious that the number of wavelet
summands can be compared to the quantum number of the deformation disturbance S D (13). Each of
the wavelet summands gives a detailed information how the fault is formed.

An analogy with quantum mechanics arises here, using which the structure of elementary particles
can be represented as a deformation disturbance.

The formation of the fault can be regarded as a Poisson process, simple or fractal, and hence for
a faults distribution on scales p(L), which corresponds to the Gutenberg-Richter law, we will have a
stable or fractional stable distribution. What are the differences between these distributions, see [8].
For us, the most interesting are fractional stable distributions, in which, as was shown above, the
effects of branching and memory are taken into account.
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an expansion in the terms of the basis impulse functions, the form of which is consistent with the form
of the disturbance under consideration. Such expansion was called the sparse approximation [9, 10],
for which Berlage pulses are used as the basis functions. It is obvious that the number of wavelet
summands can be compared to the quantum number of the deformation disturbance S D (13). Each of
the wavelet summands gives a detailed information how the fault is formed.

An analogy with quantum mechanics arises here, using which the structure of elementary particles
can be represented as a deformation disturbance.

The formation of the fault can be regarded as a Poisson process, simple or fractal, and hence for
a faults distribution on scales p(L), which corresponds to the Gutenberg-Richter law, we will have a
stable or fractional stable distribution. What are the differences between these distributions, see [8].
For us, the most interesting are fractional stable distributions, in which, as was shown above, the
effects of branching and memory are taken into account.

In the formation of a fault, phased (coherent) elastic and electromagnetic oscillations arise [11].
This is due to the pair of forces and an element of current appear simultaneously in the dislocation,
which serve as sources of two types of oscillations. And the fault can be represented as a flow of
dislocations. It is interesting to find the relation between the energy and the spatial scale of the fault
(and the perturbation as a whole), which until now is known only from observations. Let us turn again
to an analogy with quantum mechanics.

Using the sine-Gordon equation, the formation of a discontinuity (fault) can be represented as the
motion of a wave on a periodic potential with the addition of fracture energy and elastic deformations.
Here we do not consider the loss of radiation. The Hamiltonian of these oscillations will have the
form

E2 = m2(L) + p2 − σ2L2 + εkL3, (14)

where E is the oscillation energy operator, m2(L) is the periodic potential (for the Gordon equation),
p is the impulse operator, σ2L2 is the energy of fractures, σ2 is the specific energy of destruction,
εkL3 is the energy of elastic deformations, ε is relative deformation (their critical level is supported
by the work of external forces ), k is the shear modulus.

A wave of unlimited destruction is possible if there is satisfied the Griffith condition L > σ2/(εk).
For L → ∞ (p ∼ 1/L) we obtain the asymptotic expression E2 � εkL3, which gives the relation
between the energy of elastic oscillations and the scale of the distubance E �

√
εk L3/2. This expres-

sion is used to conversion the magnitude to the logarithm of the event energy, the exponent b = 3/2
(b-value in the expression lgE = a + b lgL, where lgL = M is the magnitude). Until now, the value
b = 3/2 was known only from experimental data, and the physical significance of the parameter
a =
√
εk was not discussed till now. It should be specially noted that the value ε is a characteristic of

the state of the medium and has the physical significance of critical elastic relative deformations.

5 Discussion and conclusions

Turbulent velocity pulsations satisfy the following relation ν ∼ l1/3, and the energy ν2 ∼ l2/3, where l is
the scale of pulsations. Turbulence has much in common with deformation disturbance (destruction),
but their power law pulsation spectra differ in the exponents, which is due to differences in the initial
dynamical equations.

Deformation disturbance have much in common with electrical breakdown and lightning dis-
charges, with acoustic and electromagnetic fluctuations in the plasma. The developed statistical model
will help to look from another point of view at the suddenness of precipitations from the radiation
belts, the features of the aurora borealis and the nature of globe lightning. And the analogy with
quantum mechanics opens new possibilities in studies of fractal dynamics of elementary particles and
cosmic rays.

Plastic deformations have much in common with epidemics, see ETAS model [5], the prototype
of which was the Markov-Poya process. Its fractal generalization will allow to take into account the
effects of memory in the diseases.

The multiplicity of analogies between different physical processes indicates that they belong to
the class of critical phenomena.

Plastic deformation disturbances develop on orders faster than the period of their preparation.
Therefore, the disturbances are sources of abnormal increased seismoacoustic and electromagnetic
emission, which acquires statistical characteristics of the related dislocational changes in clusters, that
allows using anomalies in signals of emission to diagnose the activation of deformation processes. The
intensity of emission in the background and during the seismic quiescence period is significantly lower
than in activation phase. And the differences between the background and the quiescence period can
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be insignificant, therefore long observations and their comparative analysis will be required to identify
a shortage (deficit) of events that will lead to a relaxation of stresses.

Emission of plastic deformation disturbance plays a special role in the processes of lithosphere-
ionospheric interaction precisely because its intensity far exceeds the emission of the background
regime. Ionospheric effects are observed using ionosonde, GPS technologies and lidars in the varia-
tions of the ionosphere parameters, the precipitation of charged particles from the radiation layers and
the formation of light scattering layers in the ionosphere by excited atoms and ions. The comparable
effects in the ionosphere can also be created by lightning discharges.

A fractal model of plastic deformation disturbance and associated seismoacoustic and electromag-
netic emission is proposed.

The fractal model includes branching and memory effects. ETAS model – only branching.
The fluctuation spectra of the deformation perturbation and turbulence are differ on a reason of

the differences in their dynamic equations.
A statistical justification of the Gutenberg-Richter law is provided using stable distributions for

the background regime and fractional stable one for the phases of quiescence and disturbance. For a
more detailed description, it is proposed to use the fractinalal Poisson process with flow a time varying
on power law.

The topological quantum number arising in the representation of a deformation disturbance in the
form of a fractal pulse Berlage is determined by the deficit of events at the stage of preparation of the
deformation disturbance and when processing signal it is obtained with using a sparse approximation
of the disturbance.

The topological quantum number defines the relation between scale levels and can be used as the
logarithm base in scaling.

A dynamic relation was determined between the energy and the spatial scale of the deformation
disturbance (dislocation, seismic event). Thus, it is given the justification for the transformation from
the magnitudes to the logarithm of the event energy.
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