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Abstract. In this paper, we propose an algorithm that evaluates noise variance with a numerical integration 
method. For noise variance estimation, we use Krogh method with a variable integration step. In line with 
common practice, we limit our study to fourth-order method. First, we perform simulation tests for 
randomly generated signals, related to the transition state and steady state. Next, we formulate three 
methodologies (research hypotheses) of noise variance estimation, and then compare their efficiency. 

1 Introduction 
Noise variance estimation is one of key unresolved 
issues associated with signal filtering [1-4]. If the noise 
variance is estimated incorrectly, and the estimation 
output is then used for signal filtering, real time 
measurement results might be distorted. To estimate the 
measurement noise one may calculate, for instance, 
measurement variance, as in [1]. Estimation of the 
process noise, however, is a way more complicated. The 
latter might be carried out by means of Bayesian, 
maximum likelihood, correlation and covariance 
matching [1, 4, 5]. Another acceptable approach is to 
assume that the process noise is constant, while taking 
into account the varying measurement noise.  

Kalman filter is one of the most frequently used 
filters [6-8]. It is an extended version of recursive 
filtering [1, 6]. The latter is applied only for the 
measurement noise, while the former can be used also 
for the process noise.  However, to use Kalman filter we 
need to have precise information about the object (in 
other words, we might encounter problems resulting 
from the observer effect). However, due to varying 
degree of the object’s complexity, this is not always 
possible. Having complete information about the object, 
we can select the elements of the positive definite 
covariance matrix after they have been modified. If we 
lack more specific information about the object, we 
might define the elements of the covariance matrix 
incorrectly, and, in extreme cases, the matrix may turn 
out not positive definite. In consequence, the 
measurement results might prove imprecise. 

This paper presents a method for noise variance 
estimation based on verification of three hypotheses, 
with Krogh’s [9] method for numerical integration 
applied in each case. Small degree of complexity allows 
to apply these methods in real time measurement. We 
use values corresponding to individual hypotheses to 

explain the measurement noise R. The process noise is 
assumed to be constant and equal to Q.  

2 Krogh algorithm 

The Krogh algorithm [9] was first described in 1960s 
and is usually applied for numerical integration. One of 
its unique features is that it allows for changes in values 
of determinants in each timestep. At the same time, in 
spite of the change in determinants, their convergence of 
the individual processes of differential equation solutions 
is preserved. The Krogh algorithm is defined as follows 
[9].  

May w determine a polynomial given for time points 
tn, tn-1,…, tn-q+1. The polynomial is defined by Newton 
forward differences formulae: 
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Consider a following polynomial M*q,n(t)  
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where M defines the predictor, while M* determines the 
corrector. By inserting additional symbols  
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where i denotes the concurrent sample numbers from 
equations (1) to (4), we can yield the dependence which 
defines the range of the polynomial coefficients 

)()1()1()1(1 nnnn iiii ϕβϕϕ +−+=++ .         (5) 

3 Algorithm 
Below we present the algorithm for the measurement 
variance and the hypotheses we aim to test.  

The algorithms consist of five main steps, which 
three hypotheses are based on: 
1. Calculating coefficients φ according to (5). 
2. Calculating the variance for each of the coefficients 

φ. 
3. Estimating the mutual dependencies between the 

calculated variances and ordering them from the 
largest (rmax) to the smallest one (rmin); the number of 
variances are denoted with l. 

4. Calculating the arithmetic mean c  from the mutual 
dependencies from the third step. 

5. Calculating the variance of the signal measured with 
noise as snσ . 

Hypothesis 1:  

,1
1 snc
l

h σ=                     (6) 

Hypothesis 2: 
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Hypothesis 3: 
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where 10σ denotes the variance of the first 10 samples. 
In this paper, we use a modified form of Kalman 

filter, which can be written in short as follows [6, 8] 

kkkkk BuxAx += −−− 1/11/ ˆˆ ,          (9) 

QAAPP += −−
T

kkkk /11/ ,        (10) 

( )1// ˆˆ −−= kkkkkk xHzKx ,        (11) 

( ) 11/1/
−

−− += RHHPHPK T
kk

T
kkk ,      (12) 

( ) 1// −−= kkkkk PHKIP ,        (13) 

where Q matrix of the process noise, R matrix of the 
measurement noise depending on the hypothesis,            
K denotes the Kalman gain, A – state transition matrix, 
B – control matrix, P – state variance matrix,                  
H – measurement matrix, z – measurement variables,       
I – identity matrix, x̂  – estimated state,  index k denotes 
a sample in k-th time point. 

Next, in order to verify the proposed hypotheses, we 
have carried out tests for randomly generated signals, 
both for steady state and transition states.  

4 Simulation results 
In this Chapter, we present simulation results for a signal 
generated randomly for the transition state. The signal 
was generated by means of the Taylor series 
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We restricted our calculations to the fourth order 
derivative (m=4). The value of the parameter a was 
randomly drawn from the interval <-100, 100>. 
Following that, a white noise is superimposed on the 
randomly generated signal. 

Next, we estimated the noise using the algorithm 
from Chapter 3 and the proposed hypotheses. The results 
are presented in Fig. 1. In addition, in this Figure we 
show the variance of the noise with and without the 
source signal – snσ , nσ , respectively. 

 
Fig. 1. Verification of the proposed hypotheses for the 
transition state. 

From Fig. 1 we can conclude that, based on 
Hypothesis 3, we can obtain the most accurate 
estimation of the noise variance.  
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Next, based on Fourier series, we generate the signal 
for the steady state  
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where coefficients a0, an and bn are drawn randomly from 
the interval <-100, 100> and then, consistently, we 
restricted the series to a fourth order (m=4).  

 
Fig. 2. Verification of the proposed hypotheses for the 
transition state. 

As the former case, we imposed a white noise on the 
randomly generated signal. The results, along with the 
variance of the distorted source signal and the variance 
of the noise itself, are depicted in Fig. 2. The best 
estimation of the noise variance in the steady state was 
obtained when Hypothesis 2 was applied. 

To confirm that the above conclusions are correct, we 
carried out additional verification, for distorted signal of 
sinusoidal, sawtooth, rectangular and constant  
waveforms. A white noise was superimposed on the 
sinusoidal signal. Next, we checked the proposed 
hypotheses. The result is shown in Fig. 3. 

 
Fig. 3. Verification of the proposed hypotheses for the 
sinusoidal signal with a superimposed white noise. 

We repeated the above procedure for the sawtooth 
signal with a superimposed white noise. The result is 
presented in Fig. 4. We conclude that by applying either 

Hypothesis 2 or 3, we yielded the most accurate 
estimation for sinusoidal and sawtooth shape. We also 
verified the rectangular and constant signal. We imposed 
a white noise on both and checked if the algorithm 
estimates the noise variance correctly.  

 
Fig. 4.  Verification of the proposed hypotheses for the saw 
signal with a superimposed white noise. 

The results are presented in Fig. 5 (for the 
rectangular signal) and Fig. 6 (constant signal). Both 
Hypotheses, 2 and 3, estimated the noise variance best.  

 
Fig. 5. Verification of the proposed hypotheses for the 
rectangular signal with a superimposed white noise. 

 
Fig. 6. Verification of the proposed hypotheses for the constant 
signal with a superimposed white noise. 
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We can observe that in most cases the proposed 
hypotheses allow for an accurate estimation of the noise 
variance, with the best results obtained for Hypotheses 2 
and 3. The noise was estimated particularly well in case 
of randomly generated signals, both for steady state 
(Hypotheses 2 and 3) and transient state.  

Next, we confronted the above results with the results 
obtained from measurements performed for a real 
medium-power industrial drive with an SEE355ML4BS 
frequency inverter. The characteristics of the drive are as 
follows. UΔ=400 V, IΔ=523 A, Pn=315 kW, Tn=2020 
Nm, nn=1489 rpm, η=96.6 %, Id=6.2 kgm2, where UΔ 
denotes line-to-line voltage, IΔ line current,    Pn nominal 
power, Tn nominal torque, nn  nominal rotary velocity, Id 
moment of inertia on the motor shaft, η efficiency. The 
considered object also comprised a 20W39MX3GV 
pomp of capacity equal to 550m3/h, liquid column of 130 
m and rotary velocity equal to 1490 rpm. 

Next, we performed measurement of the converter 
drive described above. We used a measurement device  
consisting of two NI 6133 measurement cards, which 
enable 16-channel measuring with a maximum sampling 
rate of 1 MS/s. We applied CWT30LF Rogowski coils 
from PEM with measurement error of 0.2%. The 
sampling rate was lowered to 400 kS/s. We yielded a 
very distorted result. Hence, we applied linear Kalman 
filter, assuming that the object’s model is completely 
unknown. Therefore, the filtering depending exclusively 
on the assumed noise variance and measurement results.  

 
Fig. 7. Measurement results of the line current iL1. 

Figs. 7 and 8 show the measurement results S of the 
line current iL1 and iL2, both raw and after Kalman filter 
has been applied. We assumed that the process noise Q 
is constant. The measurement noise R is estimated based 
on the three hypotheses (h1, h2 and h3, respectively) and 
the variance of the measurement results -  var(S). Such 
an assumption is frequently applied by engineers; yet, as 
Figs. 7 and 8 show, it proved to be an oversimplification, 
and to yield inaccurate results. In extreme cases, such an 
assumption might distort measurement results. However, 
from Figs. 7 and 8 we may also conclude that the 
hypotheses, particularly Hypothesis 2, proposed in this 
paper estimate the measurement noise precisely. For 
Hypotheses 1 and 3, the results are quite smooth. 

However, in case of these hypotheses, we can observe a 
phase shift, which is unwelcome. 

 

Fig. 8. Measurement results of the line current iL2. 

Thus, both hypotheses should not be applied in 
practice. Therefore, our results indicate that Hypothesis 
2 may prove a handy tool when estimating the 
measurement noise by means of Kalman filter.  

5 Conclusions 
In this paper, we compared three hypotheses, which 
facilitate estimating the measurement noise. We applied 
the estimation results in Kalman filter. Next, confronted 
the results from theoretical considerations with the 
results from measurements, carried out in working 
conditions, and obtain a satisfactory outcome, 
particularly for one of the hypotheses. Taking into 
account the above as well as simplicity of our approach, 
it may be recommend for real-time measurements. 
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