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Abstract. In this paper the new methods concerning the energy-based minimization of the perfect control 
inputs is presented. For that reason the multivariable integer- and fractional-order models are applied which 
can be used for describing a various real world processes. Up to now, the classical approaches have been 
used in forms of minimum-norm/least squares inverses. Notwithstanding, the above-mentioned tool do not 
guarantee the optimal control corresponding to optimal input energy. Therefore the new class of inverse-
based methods has been introduced, in particular the new σ- and H-inverse of nonsquare parameter and 
polynomial matrices. Thus a proposed solution remarkably outperforms the typical ones in systems where 
the control runs can be understood in terms of different physical quantities, for example heat and mass 
transfer, electricity etc. A simulation study performed in Matlab/Simulink environment confirms the big 
potential of the new energy-based approaches.  

1 Introduction 
The issues involving the stability and robustness of 

MV/perfect control for LTI MIMO integer-order 
discrete-time systems in state-space framework become 
the field of intense scientific research [1-7]. Taking into 
account the integer-order perfect control the quest for 
advance takes the form of utilization different types of 
parameter of polynomial right inverses. Until now, the 
mostly used and widely presented in the literature is 
unique minimum-norm right T-inverse, regarded as 
minimum energy one [1,4,5]. However, application the 
unique T-inverse produce only one inverse model control 
(IMC) system, hence it cannot be used to wide class of 
cases where the control inputs remain unstable under 
perfect control law. To overcome such obstacle there is a 
need for finding nonunique right inverse letting us 
generate an infinite set of IMC systems, amongst which 
we can look for stable and robust ones. The first method 
can be application of newly introduced set of nonunique 
parameter and polynomial  right inverses,  in particular 
σ- and H-inverse [3-5,8-9]. The crucial features of 
above-mentioned inverses are so-called degrees of 
freedom which effectively impact the robustness, 
especially in terms of minimum-energy perfect control 
design. Aforementioned exploration of new ways of 
enhancement the robustness of discrete-time integer-
order perfect control systems, in authors opinion, can be 
also widen by implementation fractional-order model 
considered as the model closer to the real world objects, 
giving the prospect to develop more efficient i.e. lower 
energy consuming and more accurate control strategies. 
The method of employment fractional model is based on 
entering slight modification into the order α of well-

known Grünwald–Letnikov discrete-time fractional 
difference operator Δα of non-integer order α [10-11], 
which for classical perfect control systems is equal to 
α=1. The gist of approach is such modification of the 
perfect control system order that do not distort the 
original system i.e. leaves parameter α value still close 
to α=1 but influence its stability and robustness. In order 
to evaluate the outcome the energy-based performance 
indices necessary to assess the robustification of the 
perfect control, is introduced. The presented 
methodology indicates the direction to develop the new 
algorithms for minimizing the energy of fractional-order 
MV/perfect control inputs. Of course, the new method is 
mainly dedicated to nonsquare systems i.e. systems 
having different number of input and output variables. 

2 System representation  
Linear time-invariant (LTI) discrete-time fractional-
order system S(𝐀𝐀𝐝𝐝,𝐁𝐁,𝐂𝐂) described by the Grünwald–
Letnikov fractional difference operator is defined by the 
formula [10-11] 

  Δ!𝐱𝐱 𝑘𝑘 + 1 = 𝐀𝐀𝐝𝐝𝐱𝐱 𝑘𝑘 + 𝐁𝐁𝐁𝐁 𝑘𝑘 ;   𝐱𝐱 0 = 𝐱𝐱𝟎𝟎
𝐲𝐲 𝑘𝑘 = 𝐂𝐂𝐂𝐂 𝑘𝑘                                                                                                       

,  (1) 

where 𝑘𝑘 denotes the discrete time, whereas Grünwald–
Letnikov fractional difference operator Δ! of an order α 
(0<α<2, 𝛼𝛼 ∈ ℝ) is defined by following formula: 
 

Δ!𝐱𝐱 𝑘𝑘 =    −1 ! 𝛼𝛼
𝑘𝑘

!
!!! 𝐱𝐱 𝑘𝑘 − 𝑗𝑗 , (2) 

 
whilst 
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𝛼𝛼
𝑗𝑗 =

1                                                  𝑗𝑗 = 0
! !!! …(!!!!!)

!!
      𝑗𝑗 > 0  .  (3) 

The system dimensions is defined as follows: 𝑛𝑛!-
inputs  𝐮𝐮 𝑘𝑘 , 𝑛𝑛!-outputs 𝐲𝐲 𝑘𝑘  and n-state vector 𝐱𝐱(𝑘𝑘).  
Remark 1. For classical state-space systems with α=1 we 
have 

𝐱𝐱 𝑘𝑘 + 1 = 𝐀𝐀𝐀𝐀 𝑘𝑘 + 𝐁𝐁𝐁𝐁 𝑘𝑘 ;   𝐱𝐱 0 = 𝐱𝐱𝟎𝟎
    𝐲𝐲 𝑘𝑘 = 𝐂𝐂𝐂𝐂 𝑘𝑘                                                                                                       

,  (4) 

where 𝐀𝐀 = 𝐀𝐀𝐝𝐝 + 𝐈𝐈𝒏𝒏 and 𝐈𝐈𝒏𝒏 is the identity n-matrix. 

3 Integer-/fractional-order perfect 
control 
To consider the discrete-time perfect control for 
fractional-order system denoted by formulas (1-3) it is 
essential to determine and minimize the performance 
index described by the following formula 
𝐽𝐽 𝐮𝐮(𝑘𝑘) = 𝐲𝐲 𝑘𝑘 + 1 − 𝐲𝐲𝐫𝐫𝐫𝐫𝐫𝐫 𝑘𝑘 + 1 !!

!!!                            ×
𝐲𝐲 𝑘𝑘 + 1 − 𝐲𝐲𝐫𝐫𝐫𝐫𝐫𝐫(𝑘𝑘 + 1)  , (5) 

in which 𝐲𝐲 𝑘𝑘 + 1  represents one step deterministic 
output predictor and 𝐲𝐲𝐫𝐫𝐫𝐫𝐫𝐫(𝑘𝑘 + 1) indicates the one-step 
output reference/setpoint. This enables defining the 
fractional-order perfect control law or right-invertible 
systems [10]  

𝐮𝐮 𝑘𝑘 = 𝐂𝐂𝐂𝐂 !  [𝐲𝐲𝐫𝐫𝐫𝐫𝐫𝐫 𝑘𝑘 + 1 − 𝐂𝐂𝐀𝐀𝐝𝐝𝐱𝐱 𝑘𝑘  
  +𝐂𝐂 −1 ! 𝛼𝛼

𝑘𝑘
!!!
!!! 𝐱𝐱 𝑘𝑘 − 𝑗𝑗 − 1 ].  (6) 

For classical state-space systems with parameter α = 1 
the Eqn. (6) reduces to the multivariable integer-order 
perfect control 

𝐮𝐮 𝑘𝑘 = 𝐂𝐂𝐂𝐂 !  [𝐲𝐲𝐫𝐫𝐫𝐫𝐫𝐫 𝑘𝑘 + 1 − 𝐂𝐂𝐀𝐀𝐝𝐝𝐱𝐱 𝑘𝑘 ]. (7) 

Remark 2. In further consideration are taken into 
account only state-space LTI MIMO discrete-time  
systems with product of 𝐂𝐂𝐂𝐂 being right invertible, where 
symbol ‘R’ denotes ant right inverse. This imposes that 
number of inputs of the object is higher than number of 
its outputs (n! >   n!). For such systems the perfect 
control exists [1].  For left-invertible systems (n! <   n!) 
the mentioned control strategy cannot be obtained. The 
issue concerning the implementation of nonsquare right 
inverses into perfect control laws is discussed in next 
section 

4 Inverses of nonsquare matrices 
At the beginning the definition of classical unique 

minimum-norm T-inverse of 𝐁𝐁(𝑞𝑞!!) with dimension 
𝑛𝑛!×𝑛𝑛!, dedicated to full normal rank systems in the 
backward shift operator domain, is presented [1]. 

 
Definition. Let the polynomial matrix 𝐁𝐁 𝑞𝑞!! =

𝐛𝐛𝟎𝟎 +   𝐛𝐛𝟏𝟏𝑞𝑞!! +⋯+ 𝐛𝐛𝐦𝐦𝑞𝑞!! be of full rank 𝑛𝑛! (or 𝑛𝑛!). 
The (unique) minimum-norm right (or least square left) 
T-inverse of 𝐁𝐁 𝑞𝑞!!  is defined as 

 𝐁𝐁!! 𝑞𝑞!! = 𝐁𝐁! 𝑞𝑞!! [  𝐁𝐁 𝑞𝑞!! 𝐁𝐁! 𝑞𝑞!! ]  !! (or 𝐁𝐁!! =    
𝐁𝐁 𝑞𝑞!! 𝐁𝐁! 𝑞𝑞!!   !!𝐁𝐁! 𝑞𝑞!! ). 

 
For the purpose of further analysis the parameter 

system is given due consideration which forms a special 
instance of polynomial one under 𝐁𝐁 𝑞𝑞!! = 𝐛𝐛𝟎𝟎. 
However, the unique T-inverse generates exactly one 
solution, which in many cases do not meet the 
requirements of conducted study. 

An enhancement of aforementioned unique right T-
inverse is nonunique right σ-inverse involving so-called 
degrees of freedom. The recent formalization of σ-
inverse is presented in Ref. [4] in form of Corollary 1. 

 
Corollary. Let the polynomial matrix 𝐁𝐁 𝑞𝑞!! = 𝐛𝐛𝟎𝟎 +

  𝐛𝐛𝟏𝟏𝑞𝑞!! +⋯+ 𝐛𝐛𝐦𝐦𝑞𝑞!! be of full normal rank 𝑛𝑛! (or 𝑛𝑛!) 
and let 𝑧𝑧!𝛃𝛃 𝑧𝑧!! = 𝛃𝛃(𝑧𝑧) ∈ ℝ!!×!![𝑧𝑧] be arbitrary, 
including an arbitrary order s. Assume additionally that 
the product 𝐁𝐁 𝑞𝑞!! 𝛃𝛃! 𝑞𝑞!!  is of full normal rank 𝑛𝑛! (or 
𝑛𝑛!). Then an old form of 𝜎𝜎-inverse (see [1], p. 57, Eqn. 
(5.3)) can be equivalently redefined as 𝐁𝐁! 𝑞𝑞!! =
𝛃𝛃! 𝑞𝑞!! [  𝐁𝐁 𝑞𝑞!! 𝛃𝛃! 𝑞𝑞!! ]!!. 

The polynomial form of σ-inverse can be 
downgraded to parameter one for 𝐁𝐁 𝑞𝑞!! = 𝐛𝐛𝟎𝟎, and 
have the parameter σ-inverse formula simplified do the 
following form 

𝐁𝐁! 𝑞𝑞!! = 𝛃𝛃![  𝐁𝐁 𝑞𝑞!! 𝛃𝛃!]!!,     (8) 
with parameter degrees of freedom 𝛃𝛃. Some issues 
concerning 𝛃𝛃 having polynomial matrices can be found 
in Ref. [5]. 

Remark 3. For 𝛃𝛃 𝑞𝑞!! = 𝐁𝐁 𝑞𝑞!!  the 𝜎𝜎-inverse 
specializes to T-inverse. 

Remark 4. In Eqn. (8) it should rather be written 𝐁𝐁! 
instead of  𝐁𝐁! 𝑞𝑞!! , as well as 𝐁𝐁 instead of  𝐁𝐁 𝑞𝑞!! . 

Having the notion of polynomial inverses and their 
parameter representations, we are able to implement the 
T-, 𝜎𝜎-inverses into the fractional-order perfect control 
law as in Eqn. (6), which is needed to run the simulation 
study. In the simulation study T-inverse is used, 𝜎𝜎-
inverse is applied only for cases in which T-inverse 
generates unstable control inputs. An H-inverse, basing 
on SVD decomposition, with parameter degrees of 
freedom 𝐋𝐋 [3]   

𝐀𝐀! = (𝐕𝐕!)!!𝚺𝚺!𝐔𝐔!! ,      (9) 
where 𝚺𝚺! = 𝚺𝚺!!!

𝐋𝐋
, can be used instead. However, 

application of 𝜎𝜎-inverse with parameter degrees of 
freedom 𝛃𝛃 is more convenient solution, specifically. 

5 Energy-based improvement in 
fractional-order perfect control 
The aim of the study is to present that even minor 
change in the order of the system may lead to the 
increase of perfect control robustness. The manipulation 
of parameter α, where α = 1 for classical systems i.e. 
integer-order systems, can directly affect the perfect 
control counteracting the undesirable rumbling. To 
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accomplish the objectives of the study, the measures 
enabling evaluation how the alteration of the parameter α 
influence the robustness of the perfect control in terms of 
energy, have to be establish. Moreover the value for 
which the perfect control energy and state vector is close 
to the minimum, has to be determined. The introduced 
below indices are basing on the perfect control and state 
vector energy. To measure the impact of perfect control 
energy 𝐸𝐸 𝐮𝐮(𝑘𝑘)  and the state vector energy 𝐸𝐸 𝐱𝐱(𝑘𝑘)  the 
following performance indices are introduced, 
respectively 
 
𝐸𝐸 𝐮𝐮(𝑘𝑘) = 𝐮𝐮 𝑘𝑘 − 𝐮𝐮𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝑘𝑘) ! 𝐮𝐮 𝑘𝑘 − 𝐮𝐮𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝑘𝑘)!

!!! , 
                (10) 
𝐸𝐸 𝐱𝐱(𝑘𝑘) = 𝐱𝐱 𝑘𝑘 − 𝐱𝐱𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝑘𝑘) ! 𝐱𝐱 𝑘𝑘 − 𝐱𝐱𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬(𝑘𝑘)!

!!! . 
                (11) 
The 𝐮𝐮𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 and 𝐱𝐱𝐬𝐬𝐬𝐬𝐬𝐬𝐬𝐬 are the stable prefect control input 
and state vectors, accordingly.  

6 Simulation study 
Let us take into account the integer order system 
S(𝐀𝐀,𝐁𝐁,𝐂𝐂) in state-space, where  𝐀𝐀 =   0.25 −0.75

−0.05 −0.80 ,  

𝐁𝐁 = −0.75 0.90
−0.10 0.30 , 𝐂𝐂 = 0.90 −0.90  and initial 

state vector 𝐱𝐱𝟎𝟎 = −4.00   9.00 . The system is chosen 
because of rumblings in control, which make it difficult 
to stabilize. Simulation study is carried out in 
Matlab/Simulink environment with the time horizon 
𝑘𝑘!"# = 200 embracing the subsequent simulations for 
several values of fractional order difference parameter α 
modified with step 0.05. For every simulation the output 
remains at the reference/setpoint for 𝑘𝑘 ≥ 𝑑𝑑 = 1, under 
the stabilizing fractional-order perfect controls (and 𝐱𝐱 𝑘𝑘  
runs). The 𝐸𝐸 𝐮𝐮(𝑘𝑘)  and 𝐸𝐸 𝐱𝐱(𝑘𝑘)  indices are computed 
for each simulation and garnered in the Tables 1 and 2. 

Tables 1 and 2 present results of simulation for 
values of parameter α ≥ 1, for α < 1 the perfect control 
become unstable. The results of simulations show that 
slight increase in the order of perfect control (between  
1 < α ≤ 1.15) affect the improvement in perfect control 
robustness in terms of control energy needed for its 
stabilization. Some results of simulation study are 
presented in Figs. 1-6. It can be observed that significant 
increase in perfect control robustness is obtained for 
α ≈ 1.15 , where the value 𝐸𝐸 𝐮𝐮(𝑘𝑘)  is close to 
minimum. There is also decline in 𝐸𝐸 𝐱𝐱(𝑘𝑘)  value, 
although for mentioned α does not reach a minimum 
value. Moreover the Fig. 5 may suggest that for 
α = 1.20 there is still improvement in perfect control 
robustness. In fact the value 𝐸𝐸 𝐮𝐮(𝑘𝑘) , interpreted as the 
energy of perfect control, increases, which means that 
system go beyond its optimum point. 

It should also be strongly indicated that the robust 
fractional-order perfect control strictly dedicated to non-
integer order plants described by the Grünwald–Letnikov 
fractional difference operator can be obtained in a 
different way. Another example could be an application 
of various nonunique right inverses of CB product (for 
example see Eq. (6)). Due to special selected degrees of 

freedom we can significantly improve the robustness of 
this control strategy. The issue corresponds with the 
perfect control design of multivariable integer-order 
systems. 

Tab. 1 – summary of the simulation study results for 𝐸𝐸 𝐮𝐮(𝑘𝑘) . 
𝛼𝛼 𝐮𝐮𝟏𝟏 𝐮𝐮𝟐𝟐 𝐸𝐸 𝐮𝐮(𝑘𝑘)  𝐮𝐮𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝐮𝐮𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

1.00 46.1374 39.3123 85.4497 -0.6182 0.5707 

1.05 14.2739 12.1624 26.4363 -0.6180 0.5705 

1.10 8.6567 7.3761 16.0328 -0.6179 0.5704 

1.15 8.2402 7.0213 15.2615 -0.6179 0.5704 

1.20 10.4085 8.8688 19.2772 -0.6179 0.5704 

1.25 14.4960 12.3516 26.8476 -0.6179 0.5704 

Tab. 2 – summary of the simulation study results for 𝐸𝐸 𝐱𝐱(𝑘𝑘) . 
𝛼𝛼 𝐱𝐱𝟏𝟏 𝐱𝐱𝟏𝟏 𝐸𝐸 𝐱𝐱(𝑘𝑘)  𝐱𝐱𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝐱𝐱𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 

1.00 562.7609 614.9315 1177.6924 1.2070 0.0959 

1.05 179.6233 231.7935 411.4168 1.2070 0.0959 

1.10 96.0203 148.1910 244.2113 1.2070 0.0959 

1.15 62.0046 114.1754 176.1800 1.2070 0.0959 

1.20 45.5737 97.7445 143.3183 1.2070 0.0959 

1.25 37.7172 89.8878 127.6050 1.2070 0.0959 
 

 
Fig. 1 – u(k) for α = 1, k = 200.  

 
Fig. 2 – x(k) for α = 1, k = 200.  
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Fig. 3 – u(k) for α = 1.15, k = 200.  

  
Fig. 4 – x(k) for α = 1.15, k = 200.   

 
Fig. 5 – u(k) for α = 1.20, k = 200. 

 Note that for fractional-order systems of Eqns. (1) 
the output remains at the reference/setpoint for 
𝑘𝑘 ≥ 𝑑𝑑 = 1 even under unstable perfect control, this is a 
main feature of this control strategy. Nevertheless, due to 
an application of different tools we can immediately 
obtain the minimum phase behavior of non-integer order 
plants. It can only be done for nonsquare systems having 
different number of input and output variables in contrast 
to the square ones where the mechanism of 
nonuniqueness does not exist. 

  
Fig. 6 – x(k) for α = 1.20, k = 200.   

7 Conclusions 
In the paper the new approach to minimize the 

energy of perfect control and growth of the system 
robustness by application of fractional-order model has 
been presented. The simulation examples of 
multivariable discrete-time system in state-space 
framework have been carried out in Matlab/Simulink 
environment. The results of simulation study, evaluated 
using the introduced authors’ indices, show the decrease 
of energy required to stabilize the system inputs as well 
as decline in state vector energy. That confirms the 
correctness of the presented strategy and demonstrates 
the potential of proposed method in reducing control 
energy. The future study can be focused on search of the 
analytical formula that proofs the results obtained in the 
simulation tasks.   
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