
*
 Corresponding author: mjaremkiewicz@pk.edu.pl 

Determination of transient temperature fields in thick-walled 
elements using the inverse method 

Magdalena Jaremkiewicz*, and  Artur Cebula 

Institute of Thermal Power Engineering, Cracow University of Technology, Al. Jana Pawła II 37, 31-864 Cracow, Poland 

Abstract. The purpose of this paper is to propose a method of determining the transient temperature of the 

inner surface of thick-walled elements. The method can be used to determine thermal stresses in pressure 

elements. An inverse marching method is proposed to determine the transient temperature of the thick-

walled element inner surface with high accuracy. The inverse method was validated computationally. The 

comparison between the temperatures obtained from the direct heat conduction problem solution and the 

results obtained by means of the proposed inverse method is very satisfactory. The advantage of the method 

is the possibility of determining the heat transfer coefficient at a point on the exposed surface based on the 

local temperature distribution measured on the insulated outer surface. The heat transfer coefficient 

determined experimentally can be used to calculate thermal stresses in elements with a complex shape. The 

proposed method can be used in online computer systems to monitor temperature and thermal stresses in 

thick-walled pressure components because the computing time is very short. 

 

1. Introduction 
Unsteady-state thermal stresses arising in pressure 

elements cannot be calculated correctly without knowing 

the temperature of the fluid and the heat transfer 

coefficient on the inner surface of these elements. In 

order to determine the heat transfer coefficient, very 

precise measurements of the transient temperature are 

required due to the small difference between the 
temperature of the fluid under high pressure and the 

temperature of the element inner surface. The heat 

transfer coefficient has a significant effect on the 

optimum rate of changes in the fluid temperature, which 

is determined from the condition of not exceeding the 

thermal stress value on the inner surface of the pressure 

element [1]. 

The temperature measurement of the pressure 

element surface which is in contact with the fluid is 

difficult, especially if the fluid temperature, pressure and 

velocity parameters are high. It is not always possible to 
mount a temperature sensor on the element surface, and 

temperature measurements can be disturbed by 

significant errors due to contact resistance. 

The most common method for determining time-

dependent changes in the element surface temperature 

described in reference literature is based on solving the 

direct heat conduction problem analytically or 

numerically. This method is based on the heat transfer 

coefficient, determined from the correlation for the 

Nusselt number. The analysis usually concerns one-

dimensional cases. Two-dimensional or three-

dimensional issues are discussed in [2-4]. Using the 

direct method to determine the inner surface transient 

temperature can be problematic. The heat transfer 

coefficients on the inner surfaces of elements are 

determined from correlations known from reference 

literature. These are usually correlations found for 

hydrodynamically and thermally developed flows under 
steady-state conditions. 

In recent years, extensive research has been 

conducted on the development of methods based on 

solving inverse heat conduction problems [5-13]. These 

methods enable determination of the inner surface 

temperature on the basis of two known boundary 

conditions on the outer surface. In the case of elements 

with regular shapes, the two- or three-dimensional 

transient temperature field can be determined by solving 

the inverse heat conduction problem using marching 

methods [7, 8, 11, 12]. In order to calculate the inner 
surface transient-state temperature, the inverse region is 

divided into control volumes. The method marches in 

space towards the element inner surface by using the 

energy balance equations for the finite volumes placed 

on the boundary to find the temperature values in 

adjacent nodes. 

A modified space marching method for transient-

state nonlinear inverse heat conduction problems is 

presented in [9]. It is based on the classical space 

marching method and reduces numerical oscillation by 

using future temperatures in the least square manner. 
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However, for elements with complex shapes and with 

holes, identification of thermal stresses and temperature 

fields by means of the marching inverse method is 

difficult. In this article, a new approach to temperature 

and thermal stress determination is proposed. Using the 

heat transfer coefficient determined on the element inner 

surface and the fluid temperature [12], commercial 

programs based on the finite element method can be 

applied to calculate thermal stresses. In this way, thermal 

stresses on the edges of holes or other places of stress 

concentration can be found. 
 

2. Identification of the temperature 
distribution in the flat thick-walled plate 
An inverse space marching method is used to determine 

the temperature distribution inside the plate (cf. Figure 

1). The transient heat conduction equation for a flat plate 

is 
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where T denotes temperature, c, ρ, k − specific heat, 

density and thermal conductivity of the plate material, 

respectively, and vq&  − energy generation rate per unit 

volume. 

 

 
 

Fig. 1. General view of the plate 

 

Based on measured temperature Tm on the plate outer 

surface 

 ( ) ( )0 , ,mT z T x y t= =  (2) 

the temperature distribution inside the plate including the 

inner surface (z = s) is found. In the developed 

calculation method it is assumed that the outer surface, 

where the temperature is measured, is thermally 

insulated. Therefore, the boundary condition for z = 0 is 

as follows: 
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There are two known boundary conditions on the surface 

z = 0, i.e. conditions (2) and (3), while the boundary 

condition on the opposite surface of the plate z = s is 

unknown. 

The side surfaces of the plate are thermally insulated, so 

the boundary conditions of the second type are as 

follows: 
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The solution of the inverse problem (1)-(5) is obtained 

using the finite volume method (FVM). 

The plate division into finite volumes is shown in Figure 
2. The energy balance equations can be written using the 

control volume method for all nodes located in the 

centres of the control volumes. 

 

 
 

Fig. 2. Plate division into control volumes 

 

The energy balance equation for node (i, j, k) inside the 

analysed finite volume is: 
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In Eq. (6) the symbols Δx, Δy, Δz denote the control 

volume dimensions, c(Ti,j,k), ρ(Ti,j,k), k(Ti,j,k) − specific 

heat, density and thermal conductivity in temperature 

Ti,j,k, respectively, and , ,( )v i j kx y zq&  − energy generation 

rate per unit volume at points (xi, yj, zk). 

Figure 3 shows examples of nodes together with the 

surrounding cells, for which the heat balance equations 

are written. Figure 3(a) illustrates all finite volumes 

taken into account when the heat balance equation is 

written for a node situated on an insulated surface (z = 

0). The thickness of control volumes adherent directly to 

the insulated surface is Δz/2. Figure 3(b) shows the cell 

around the internal node; such a case occurs in the plate 
distribution into a larger number of cells in the z-axis. 

All the cells have full dimensions: Δx, Δy, and Δz. The 

balance equation is written for the central cell. In the 

case of the heat balance compilation for a node situated 

at distance Δz from the cooled surface, the top cell has 

thickness Δz/2, and the rest are full size (Figure 3(c)). 

 
(a) 

 

(b) 

 
 

(c) 

 
 

Fig. 3. Diagram illustrating control volumes around the node 
for which the heat balance equation is written: (a) node located 
on the plate insulated surface; (b) node located within the space 

between the plate insulated and cooled surfaces; (c) node 
located on the cooled surface 

 

The heat balance equations are written for all nodes Pi, j, k 

= P(xi, yj, zk) located in the centres of gravity of each 

control volume. The coordinates of nodes in the centre of 

the control volumes are defined by the following 

formulae: 

 ( )1 , 1, ,7
2
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In order to solve the inverse problem, the analysed thick-

walled plate is divided into finite volumes (Figures 2-5). 
First, to solve the inverse problem, the heat balance 

equations are written for nodes located on the insulated 

surface z = 0 (Figures 3(a) and 4). Then time-dependent 

temperatures in the nodes shown in Figures 3(b) and 4 

lying in plane z = Δz are determined from the heat 

balance equations which are written for the nodes shown 

in Figures 3(a) and 4. In a similar way, time-dependent 

temperatures in the nodes in plane z = 2Δz (Figures 3(c) 

and 4) are determined from the heat balance equations 

for the nodes lying in plane z = Δz. Next, the temperature 

in node (4,4,4), lying on surface z = 3Δz = s is 

determined from the heat balance equations for the nodes 

lying in plane z = 2Δz. The finite volumes, in the middle 

of which temperature is measured or determined, lying 

in different planes z are marked with different colours 

(Figures 2, 4 and 5).  
 

(a) 

 
(b) 

 
(c) 

 

(d) 

 

 
Fig. 4. Location of nodes in individual planes where 

temperature is measured or calculated: (a) plane in which 
temperature measurement points are situated; (b) plane z = Δz; 

(c) plane z = 2Δz; (d) plane z = 3Δz = s 
 

 
 

Fig. 5. Cross-section of finite volumes where temperature is 
measured or determined 
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Using the calculation procedure described above, only 

the temperature at point (4,4,4) is found. 

In a similar way, the calculation procedure 

(calculation template) can be used to determine the 

temperature of additional nodes lying in plane z = 3Δz = 

s. In order to determine the heat flux density at  point (4, 

4, 4), it is necessary to measure the temperature in 16 

additional nodes lying on the insulated surface (z = 0). In 

this case, it is possible to determined temperature values 

in five nodes on the plate surface z = 3Δz = s: (4,4,4), 

(3,4,4), (5,4,4), (4,3,4), and (4,5,4). The flux density of 
the heat transferred to the fluid from the plate surface in 

node (4,4,4) can then be found from the heat balance 

equation for node (4,4,4). The heat transfer coefficient h 

on surface z = 3Δz = s is determined from the following 

formula: 
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where Tf denotes the fluid temperature. 

 

3. Computational validation of the 
inverse method 
The calculations are carried out for a flat plate. It is 

assumed that the nodes on both surfaces (z = 0 and z = s 
= 0.045 m) and inside the plate are arranged as in 
Figures 3 and 4. The distances between the nodes are as 

follows: Δx = 0.085 m, Δy = 0.085 m, Δz = s/3 = 0.015 

m, and the time step is Δt = 1 s. Calculations are made 

for constant values of the steel physical properties: k = 

57 W/(mK), ρ = 7850 kg/m3 and c = 460 J/(kgK). The 

outer surface of the plate (z = 0) is thermally insulated. 

In the calculations, it is assumed that the density of the 

heat flux transferred through the plate is q&  = 20 kW/m2, 

and the initial temperature T0 is 20ºC. 
At first, to validate the developed method, “measured 

data” are generated using the direct method, assuming 

uniform heating of the plate inner surface (z = s). 

 

Description of the direct method 
The “measurement data” are obtained using an 

analytical method. Because the plate inner surface 

heating is uniform, the heat conduction equation for the 

flat wall with independent physical properties of the 

plate material is 
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where 0 ≤ z ≤ s. Symbol κ = k/(cρ) in Eq. (11) denotes 
thermal diffusivity. 

The solution of Eq. (11) is obtained for the following 

boundary conditions 
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and the initial condition 
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The problem of (11)-(13) with the initial condition 

expressed in (14) above is solved using the Laplace 

transform. The result is 
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where n = 1, 2, ... and Fo = κt/s2 designates the Fourier 

number. 

 

All calculations are performed using the FORTRAN 

programming language. The calculation results of time-

dependent temperature changes on both surfaces of the 
plate obtained using the analytical method are presented 

in Figure 6(a). Because the plate is heated evenly, the 

calculated temperature is the same in 25 nodes located 

on the insulated outer surface. 

Then, on the basis of the obtained temperatures on 

the insulated surface, the temperature inside the wall at z 
= Δz and z = 2Δz and on the plate inner surface are 

determined using the inverse marching method. The 

calculation results are presented in Figure 6(b). The 

comparison between the temperature values on the plate 

inner surface obtained by means of the direct method 

and the inverse marching method is shown in Figure 7. 
Due to high thermal inertia of the thick-walled plate, the 

inner surface temperature calculated using the inverse 

method, with a small error compared to the temperature 

calculated using the direct method, is obtained with 

some time lag. 

 
(a) 
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(b) 

 
 

Fig. 6. Time-dependent changes in temperature: (a) data 
generated by the direct method; (b) results of calculations using 

the inverse marching method 

 

 
 

Fig. 7. Comparison between temperature values on the plate 
inner surface z = s obtained using the direct method and the 

inverse marching method 

 

However, when a small increase in the outer plate 

surface temperature is recorded, the inverse method 
enables rapid determination of the inner surface 

temperature. Better results can be achieved by carrying 

out the temperature measurements inside the plate wall, 

drilling holes in it, but this is not always allowed for 

components operating under high pressure. 

 

. Conclusions 
This paper presents a general method for determination 

of temperature, the heat flux density and the heat transfer 

coefficient on the inner surface of a thick-walled 

element. Based on the described procedure, a calculation 
program was compiled and validated for determining the 

plate inner surface temperature. 

The inverse method was validated computationally. 

The comparison between the temperature values 

obtained from the direct heat conduction problem 

solution and the results achieved by means of the 

proposed inverse method is very satisfactory. Stable and 

accurate measurement results are obtained using the 

proposed method based on the solution of the inverse 

heat conduction problem due to partial elimination of 

random errors in the input signal by using a 9-point 

moving digital filter [13]. 

After some modifications, the developed method can 
be used to monitor thermal stresses and evaluate the 

degree of wear and estimate residual life of the power 

plant pressure components such as boilers or turbines. 

By measuring the pressure element outer surface 

temperature in a small area, it is possible to determine 

the temperature of the inner surface. The presented 

method combined with the method of measuring the 

fluid unsteady-state temperature described in [12] 

enables calculation of the heat transfer coefficient on the 

inner surface. Owing to precise determination of the heat 

transfer coefficient on the inner surface, thermal stresses 
arising in the pressure element can be calculated by 

means of the finite element method. 

The presented method can be used in online applications. 

Another advantage of the method is the ease of practical 

application. 
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