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Abstract. A simple method of pressure drop calculation for two-phase flows of different fluids during 

convective boiling in channels is presented. It is based on experimental data of pressure drop multiplier R 

and void fraction ϕ obtained by Martinelli and Nelson for boiling of water in vertical tubes. The data cover 

the whole two-phase domain from ambient to critical pressure. Unfortunately, they have been presented in 

graphical forms. The first step in the procedure proposed in the paper was a transformation of the 

graphical data into analytical formulas which contain such dimensionless quantities as steam quality x, 

Martinelli parameter X, multiplier Φl2 and dimensionless coefficients D, m, E and k. In the second step, 

simple analytical formulas were determined to express the dimensionless coefficients as a function of 

physical property parameter K. In this way two simple analytical expressions for the multiplier R and void 

fraction ϕ were obtained. They are in analytical dimensionless form so they may be used directly for 

different fluids, not only for water. This is the main advantage of the proposed method. 

Notation 
A – channel cross section area, m2 

g – gravity, kg/s2 

G – mass velocity, G = ṁ/A, kg/(s·m2) 
K – physical property parameter 

L – length, m 

ṁ – mass flow rate, kg/s 

p – pressure, Pa 

R – friction factor or multiplier, R = ΔpTPf /Δplo 
v – specific volume, m3/kg 

x – steam quality, x = ṁg/(ṁg+ṁl) 

X1, X2 – Martinelli parameters 

Greek symbols: 
ϕ – void fraction, ϕ = Ag/A 

Φ – parameter proposed by Martinelli 

μ – dynamic viscosity, Pa·s 

ρ – density, kg/m3 

Θ – angle to horizontal plane, rad 
subscripts: 
g – gas (steam) 

go – gas only flow rate equal to that of two-phase flow 

l – liquid 

lo – liquid only flow at a rate equal to that of two-phase 

flow 

TPf – two-phase friction term 

1 Introduction 
In a number of engineering systems it is important to be 

able to predict the pressure drop during boiling of two-

phase medium, such as water or other fluids. Generally, 

total two-phase pressure drop for flows in vertical 

channels consists of three components – frictional loss 

ΔpTPf, momentum change Δpa and elevation pressure 

drop Δph arising from the effect of the gravitational force 
field. Thus 

 TP TPf a hp p p pΔ = Δ + Δ + Δ . (1) 

Generally, the current methods for modelling of two-

phase pressure drop fall into two categories: 

homogenous model and separated model. The latter is 

chosen in the paper for particular consideration. 

According to Collier and Thome [1], the total two-phase 

pressure drop may be written as 
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 (2) 

It order to apply the above equation it is necessary to 
develop two expressions for multiplier R and void 

fraction ϕ. Two different approaches are shown in the 
paper. The first one is the well-known Lockhart–

Martinelli (LM) correlation for calculation of both 

quantities, the second one is developed by the present 

authors. 
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2 The development of analytical formula 
for pressure multiplier R and void 
fraction ϕϕ 

2.1 The Lockhart–Martinelli Correlation 

This method was basically proposed by Lockhart and 

Martinelli in 1949 [2]. They introduced a few pertinent 

parameters. The first one is known as 2

lΦ  parameter, 

defined as 
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that is as a ratio of two-phase pressure gradient due to 

friction in a flow at mass rate equal to ṁ = ṁo to the 

pressure gradient for a liquid stream flowing alone in the 

same channel at the mass flow rate ṁl = (1–x)ṁo. 

 The second parameter is known as Martinelli one and 

is defined as  
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what means that it is a ratio of pressure gradient due to 

friction of liquid phase flowing at mass rate equal to 

ṁ = ṁl to the pressure gradient for a gas (vapour) stream 

flowing alone in the same channel at the mass flow rate 

ṁg = xṁo. For each phase flowing separately in the 

channel at flow rate ṁl or ṁg, the Martinelli parameter X1 
can be easily calculated as  

 

0.10.5 0.9

1

1g l

l g

x
x

ρ μ
ρ μ

⎛ ⎞⎛ ⎞ −⎛ ⎞Χ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 . (5) 

It follows from (3) that 
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The pressure gradient (dp/dz)l may by written as  
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where n is the exponent in Blasius friction factor 

expression for pressure drop in single phase flow. 

Taking into account equations (6), (7) and definition of 

the multiplier R one can obtain relation 
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Lockhart and Martinelli (LM) [2] have obtained 

experimental correlations for the parameter Φl and void 

fraction ϕ in graphical forms as Φl = f(X1) and  

(1–ϕ) = f(X1). The investigations were carried out for 

adiabatic horizontal two-phase flows of two-component 

systems (air-water, air-oil) at low pressure close to 

atmospheric one. Therefore, application of their graphs 

to other than the above mentioned conditions is not 

recommended. Another shortcoming of Lockhart–

Martinelli correlations comes from their solely graphical 

form. 

 Two substantial improvements of LM correlations 

were done by Chisholm [3]. First, using theoretical 

approach, he proved that the usage of Φl and X1 
parameters is justified for the separate flow model of 

two-phase flow. Secondly, because the graphical form of 

LM correlation is cumbersome in practice, he proposed 
to replace the LM graphs by analytical correlation in the 

form 
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Χ Χ
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where C is a constant which depends on flow 

mechanisms that can exists during the simultaneous flow 

of a liquid and a gas (vapour) in the channel [3]. It is 

known that four  types of flow mechanisms appear since 

the flow may be viscous (laminar) or turbulent. The 

particular values of C are listed below for the given flow 

regime: 

liquid gas C 
turbulent  – turbulent (tt)  20 

viscous  – turbulent (vt) 12 

turbulent  – viscous (vt)  10 

viscous  – viscous (vv) 5 

Using n = 0.25 in (8) and C = 20 in (9), for turbulent–

turbulent flow regime the multiplier R takes the form  

 1.75

2

1 1

20 1
(1 ) 1R x

⎛ ⎞
= − + +⎜ ⎟Χ Χ⎝ ⎠

  (10) 

which reproduces quite well the LM data for low 

pressure two-phase flow. Other, more recent 

modifications of LM correlation for micro- and 

macrochannels may be found in [4,5]. 

 For high pressure and diabatic (with heat addition, 

e.g. at boiling) flows, the use of LM correlation (10) 
leads to large errors. Therefore the attempt was made by 

one of the present authors [6], to obtain analytical 

formulas for two-phase multiplier R and void fraction ϕ. 
The present version of this approach differs significantly 

from that original one. 

2.2 Derivation of analytical formula for R 
multiplier 

Experimental investigation of pressure drop during 

boiling of water in vertical tubes have been carried out 

by Martinelli and Nelson [7] using also Davidson et. al. 
[8] data. The data for multiplier R and void fraction ϕ, 
Fig. 1 and Fig. 2, cover the whole two-phase domain 

from ambient pressure to critical one. The two-phase 

multiplier R was presented versus a mass quality x with 

pressure as a parameter, unfortunately in graphical form 

and in tables. Martinelli and Nelson [7] assumed that 
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during flow boiling, the flow regime would always be 

“turbulent–turbulent”. 
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Fig. 1. Multiplier R versus mass quality x and pressure p: 
symbols – experimental data [7], solid lines – correlation (20). 
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Fig. 2. Comparison of original (broken lines) and correlated 

(solid lines) values of void fraction ϕ as a function of dryness 

fraction x for selected values of pressure p. Original values are 
taken from Martinelli-Nelson experiments [7], approximated 
values are calculated according to (28). 

 The first aim of the present paper is therefore to 

develop mathematical formula for the multiplier R. The 

procedure starts from evaluation of the parameter Φl 
values using Fig. 1 for given pressure and steam quality 

x. Then from (8) it follows that 

 
( )2
1

l n
R
x −Φ =

−
. (11) 

For critical pressure R = 1 so with n = 0.25 the critical 

values of Φl equal to 
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1
lcr x
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−
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Moreover, for the critical pressure the Martinelli 

parameter (5) reduces to 
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since the physical properties of steam and liquid phases 

are the same. It may be shown that after extracting steam 

quality x from (13) and substituting it into (12) one 

obtains critical value of parameter Φl 
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 It was found earlier by Trela [6] that there is a 

relation between Φl and its critical value Φlcr at the same 
value of the Martinelli parameter, i.e. at condition that 

X1 = idem for the critical pressure pcr and a pressure p. 

This relation was proposed in the form 

 ( )m
l lcrDΦ = Φ  (15) 

where m is the slope of the log(Φl) line with the 
reference to the abscissa and D is a coefficient described 

by the relation 
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It was found in [6] that formula (15) is valid within the 

range of steam quality 0.03 ≤ x ≤ 0.99. 

 Using formula (14), the relation (15) can be rewritten 

in the following form 
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Relation (17) may be simplified if new Martinelli 

parameter X2 is introduced, defined as 
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Then 
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and accordingly to (8), for n = 0.25, the multiplier R 

takes the form 

 ( ) ( )
1.75

2 1.752 2

2

1
1 1 1

m
n

lR x x D
X

⋅
− ⎛ ⎞

= − Φ = − +⎜ ⎟
⎝ ⎠

. (20) 

  
 

 
DOI: 10.1051/, 0200 (2017) 7130200E3S Web of Conferences e3sconf/20113

   WTiUE 2016

6 6

3



 

The above formula replaces the empirical diagram 

R = f(x,p) given for boiling water by Martinelli Nelson 

[7]. Two parameters, D and m, appear in the equation 

(20). In the former paper [6], the parameters D and m 

were expressed versus the property parameter K in the 

graphical form. The parameter K is defined by Eq. (21) 

which also means that K is equal to the parameter R 

when x → 1, 
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Fig. 3. Fitting of coefficients D, m in multiplier R correlation 

(20). 

Figure 3 presents the variation of the parameters D and 
m versus the property parameter K. The former two 

parameters may be quite well approximated by the 

inverse trigonometric functions: 
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for D parameter and 
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for the m parameter. 

2.3 Derivation of analytical formula for void 
fraction ϕ 

Experimental investigations of the void fraction during 

flow boiling of water in vertical tubes have also been 

carried out by Martinelli and Nelson [7]. The data cover 

the whole two-phase domain from ambient pressure to 

critical one. The void fraction ϕ was presented versus 
mass quality x with pressure as a parameter in a 

graphical form, Figure 2. Procedure to develop an 

analytical formula for void fraction ϕ is analogous to the 

previous one for the multiplier R. Under critical pressure, 
the physical properties of vapour and liquid phases are 

identical and the value of ϕ becomes equivalent to 

quality x. Taking this into account one can write down 

that 

 ( ) ( )crcr x−=ϕ− 11 . (24) 

Martinelli parameter for the critical pressure is given by 
the formula (13). Extracting steam quality x from (13) 

and substituting it into (24), one gets the expression  

 ( )
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For the pressures lower than the critical, it was found in 

[6] that an analytical formula may be proposed for ϕ 

 ( )1 1
k

crEϕ ϕ− = −   (26) 

where k is the slope of straight lines in logarithmic 
coordinates and E is a coefficient given by relation 

 
( )

1

1
k

cr

E ϕ
ϕ
−

=
−

. (27) 

Taking into account (25) and (26), it is easy to show that 

the void fraction formula takes the following form  
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Fig. 4. Fitting of coefficients k, E in void fraction 
approximation formula (28). 

The values of the two coefficients E and k appearing in 

the above equation may be made dependent on the 

property parameter K (21) and may be quite well 
approximated by the hyperbolic functions  

 ( )1 0.42 tanh 0.11 1E K= − −⎡ ⎤⎣ ⎦  (29) 

and 

 ( )1 0.08 tanh 0.05 1k K= − −⎡ ⎤⎣ ⎦  (30) 

as shown in Fig. 4. 
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2.4 Pressure drop similarity in two-phase flows  

Similarity criteria for the pressure drop in a flow can be 

based on the general theory of physical phenomena 

similarity [6]. It is required that geometrical similarity 
and the similarity of physical processes (described by 

relevant equations in dimensionless form together with 

boundary conditions) will be preserved. 

 Taking this into account, similarity criteria of two 

(geometrically similar) systems comprising two-phase 

flows include the equation describing the variation of the 

friction coefficient R in the flow domain, 

  ( )
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m

R x D
X

⋅
⎛ ⎞

= − +⎜ ⎟
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, (31) 

and the boundary conditions: 
     R = 1     for x = 0, 
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 for x = 1, 

    R = 1     for p = pcr. 

 If two two-phase fluid flows (I and II), one of which 

is water, are compared then it follows from the above 

relations that the two flows will be similar if the 

boundary conditions will be the same, as the Eq. (31) is 

valid for both flows, i.e. RI = RII. For the boundary 

conditions to be identical, the equality 

 I IIK K=  (32) 

must be true for both flows considered. This means that 

the property parameter K is a similarity number which 

must be the same for the two systems. The conclusion 

from these considerations is such that by making the 

coefficients D and m in Eq. (31) functions of the 
physical parameter K, that equation can be applied to 

calculate the frictional pressure drop in two-phase flows 

of various working fluids, not only for water. 

3 Validation of the proposed method 
The validation of the above method may be done in two 

ways. Firstly, as illustrated in Figure 1, the experimental 

values of multiplier R (symbols) can be compared with 

their approximated values (solid lines) calculated 

according to (20). It is seen that analytical approximation 

fits quite well the Martinelli–Nelson data. Similarly, 
Figure 2 shows the comparison of Martinelli–Nelson 

data with analytical approximation of void fraction ϕ 
(28). In this case, there is also good agreement between 

original Martinelli–Nelson data and the analytical 

approximation. It has to be noted that the approximation 

applied is valid for a steam quality in the range 

0.03 ≤ x ≤ 0.99. 

 Second validation of the method comes from the 

comparison of the experimental data of the multiplier R 

for Freon 21 with theoretical values calculated from Eq. 

(20) with coefficients D and m given by (22) and (23), 

Fig. 5 and Fig. 6. The experimental investigation was 

carried out by Trela [9] in Laboratory of IF-FM in 

Gdańsk. The influence of mass velocity G on the 

multiplier R was also investigated. 

 Figure 5 shows also the prediction of the R multiplier 

according to well-known formulas of Lottes [10] and 

Levy [11]:  

 - Lottes formula 
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 - Levy’s formula 
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Fig. 5. Calculated (solid line) and experimental values (cross 
marks) of multiplier R versus quality x for Freon 21 at 

saturation temperature tsat = 100 °C and mean mass velocity 
G = 1090 kg/m2s. 
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Fig. 6. Calculated (solid line) and experimental values 

(triangles) of multiplier R versus quality x for Freon 21 at 
saturation temperature tsat = 100 °C and mean mass velocity 
G = 2760 kg/m2s. 

 Figure 6 presents experimental results of R multiplier 
for higher mass velocity G = 2760 kg/m2s. The dashed 

lines in Figures 5 and 6 show average values of R 

evaluated from the experiments. It is seen that R is 

decreasing when the mass velocity increases. This 

tendency is confirmed by literature, e.g. [1]. The 

experimental data of multiplier R obtained for Freon 21 

[9] suggest that effect of mass velocity on R may be 

written as  
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 Ω= RRmod   (35) 

where the correction factor Ω is expressed as 

 

25.0
1400

⎟
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G
 (36) 

in the range G = 1000 ÷ 2500 kg/m2s. A systematic 

investigation of mass velocity influence on pressure drop 

in two-phase flow was conducted by Baroczy [12] for a 

variety of fluids. His results show very complex 

dependence of the correction factor Ω not only on the 
mass velocity G but also on property index and steam 

quality. The Baroczy correction factor ΩB was presented 
in the form of graphs as a function of property index KB 

defined as 
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ρ
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μ
μ
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Fig. 7. Mass velocity correction factor ΩB as a function of 
property parameter 1/K and steam quality x for selected values 
of mass velocity G, adapted from Baroczy [12] 

 It is seen that Baroczy property index (37) is similar 

to the property parameter K (20), namely 

 KB ≈ 1/K. (38) 

Therefore it is proposed to adapt Baroczy correction 

factor ΩB to use with the multiplier R in (35) as a more 
general formula than (36). Due to complex 

representation of ΩB, it is impossible to find a simple 
approximation function allowing direct numerical 

calculations so its values should be read from the plots 

shown in Fig. 7. 

Table 1. Initial conditions for pressure drop measurements in 

R134a two-phase flow [13]. 

Case No. G [kg/m2s] p [bar] p/pcrit 

1 1200 10 0.25 

2 1200 25 0.62 

3 1200 36 0.89 

4 1800 10 0.25 

5 1800 25 0.62 

6 1800 36 0.89 
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Fig. 8. Comparison of multiplier R calculated with present 

model, i.e. Eq. (20) with Baroczy correction factor ΩB, and 

derived from Vijayarangan et al. [13] measurements for R134a. 

 The predictions of the proposed method of multiplier 

R calculation (20) with the correction factor ΩB were 
compared with experimental data for R134a refrigerant 

reported by Vijayarangan et al. [13]. For this purpose, a 

total of 12 Vijayarangan et al. measurements of 
frictional pressure drop in a vertical tube of 12.7 mm 

internal diameter were selected. Initial flow conditions 

for the comparison, which are a combination of two 
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mass velocity values and three pressure values, are 

named as Case 1 to 6 and defined in the Table 1. In each 

case, two heat flux q̇w values (35 or 80 kW/m2) were 

supplied to the R134a flow from the uniformly heated 

tube wall. 

 The comparison results are shown in Fig. 8. Good 

agreement is achieved between the Vijayarangan et al. 
data and the present model predictions, except for the 

cases with p = 10 bar and q̇w = 80 kW/m2, where the 

model clearly overestimates the R value. 

4 Conclusions 
The paper presents a simple methodology to transform 

Martinelli–Nelson graphical forms of two-phase friction 

multiplier R and void fraction ϕ into their equivalent 
analytical expressions. 

 Comparison of Martinelli–Nelson data of R and ϕ 
with their analytical approximations, Eq. (20) and (28), 

shows very good agreement, Fig.1 and Fig 2.  

 Non–dimensional property parameter K, Eq. (21), 

was introduced to allow the use of the above method to 

calculate multiplier R and void fraction ϕ for other fluids 
than water, at the condition that K for water has to be 

equal to K for that other fluid. 

 Experimental investigation of pressure drop of Freon 

21 in vertical tube (din = 11.6 mm) during boiling proved 
the validity of Eqs. (20) and (28), as well as the 

usefulness of the property parameter K. 

 The above investigation also showed the effect of 

mass velocity on the multiplier R. Formula (35) was 

proposed to take this effect into account for Freon 21. 

For other fluids Baroczy [12] correction factor was 

adapted in the form of graphs shown in Fig. 7 and 

checked against the experimental data for R134a [13]. 
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